Problem 1

Consider vectors in a Hilbert space \mathcal{H}.

1. Show that an orthonormal set is linearly independent.
2. Show that $|(a, b)|=\|a\|\|b\|$ if and only if a and b are parallel. (Hint: Use a projection).

Problem 2

Consider the following differential operator L in $[0, \infty)$

$$
L f=-\mathrm{e}^{x} \frac{d}{d x}\left(x \mathrm{e}^{-x} \frac{d f}{d x}\right)
$$

1. Show by direct calculation that L is self-adjoint with respect to the inner product with weight $w(x)=\exp (-x)$. What do you need to assume about boundary conditions?
2. Consider $f(x)=-2 x+1$ and $g(x)=x^{2}-4 x+2$. Are f and g eigenfunctions of L ?
3. Are $h(x)=1$ and g orthogonal?

Problem 3

Consider the system given by

$$
\begin{aligned}
\dot{x} & =\mathrm{e}^{x}+\sin (5 y)-\cos (2 y) \\
\dot{y} & =x+2 \sin y
\end{aligned}
$$

Show that $(0,0)$ is a point of equilibrium and analyze the stability of the system around this point.

Problem 4

Consider the initial value problem

$$
\dot{x}=\cos (t) x-\epsilon x^{2}, \quad x(0)=1
$$

1. Find the solution of the problem for $\epsilon=0$.
2. Introduction a slow time-scale $t_{1}=\epsilon t$ and find the equation governing the slow-scale evolution of the solution. Note: Your solution may contain a definite integral that you do not need to solve.
