1 Adams-Bashforth integration

A simple method to integrate an ordinary differential equation is the second-
order Adams-Bashforth integration method. We assume an initial value
problem of the form

y=f(ty®),  y0)=ywo. (1)

If tp41 = t, + At, then the second-order Adams-Bashforth method is the
following discretization of (1):
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Yn+2 = Ynt1 + At (2f(tn+17 Ynt1) — 2f(tn7yn)> . (2)

Hence, the method assumes that y,, and y,1 are known in order to compute
Yn+2. This formula is derived in the following way: Clearly we have

tnt2
Yn+2 = Ynt1 T y<t)dt (3)
tnt1
The key idea is to use an approximation of § in order to approximate the
above integral. For simplicity of notation, set w(t) = y(t). Clearly, we know
the value of w at ¢, and t,,+1 and the simple (Lagrange) linear interpolation

yields
t—1tn t— tn—i—l
w(t) = wnt1 + w
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(4)

Assuming equidistant spacing of the ¢, hence ¢, 11 —t, = At and t,,42—1t, =
2At, etc. Then it is easy to see that we obtain for the above integral
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= At (Z)f(tn—i-hyn-l—l) - %f(tna yn)> :

2 Application to nonlinear PDEs

A typical situation is to numerically solve a partial differential equation in
which both a linear operator L and a nonlinear operator R are present,
hence a PDE of the form

ur = Lu+ R(t,u), u(0) = ug (5)



We assume that the linear operator L does not depend explicitly on the time
t. Applying the Adams-Bashforth integration scheme to such a problem, we
obtain the method

1
Uppo = elA! (un + At (anH - 26LAtRn)> . (6)

This follows more or less directly from the previous section, but it is worth-
while to look at the (quick) derivation: Using an integrating factor, we find
the following integral equation equivalent to (5):

2

t
u(ty) = eL(t2—t1) (u(tl) +

t1

e =) R(s, u(s)) ds) (7)

which is valid for any t9 > #;. Recalling the results from the previous section,
we set to = ty42 and t; = t,4+1 and approximate the integral as

tn+2 1
/ e L R(s,u(s))ds = At (2Rn+1 - eLAtRn>
t
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3 Two-dimensional Navier-Stokes equations
Consider the two-dimensional Navier-Stokes equations in the form

ut + (u-V)u = rAu — Vp, V-u=0 (8)
There are different ways to solve these equations numerically. A main point
is how to enforce the constraint that the solution u has to be divergence-free.
3.1 Vorticity formulation

One possibility is the so-called wvorticity formulation. Define the vorticity w
by

Oy Uy 0 0
Vxu=| 0y | x| u |= 0 =| 0 9)
8Z 0 U2y — uly w

Taking the curl of (8), after some algebra (exercise), we obtain a simple
advection-diffusion equation for the vorticity w:

wr+ (u-V)w = rAw (10)

Note that this equation is fundamentally different in three dimensions due
to the presence of an additional term (the vorticity stretching term). In two



spatial dimensions, the vorticity is simply advected. Here, we concentrate
on the much simpler two dimensional case.

In equation (10), u depends on w and, in fact, we can compute u from
w using the Biot-Savart law. Since u is divergence-free, we have V X w =
V x V x u = —Au, hence

—A_layw

u=-A"HVxw)=| A 'w (11)
0

In our implementation (periodic boundary conditions, mean-free flow) we
can easily compute all derivatives and A~! in Fourier domain.

3.2 Elimination of the pressure term

Take the divergence of (8) in order to obtain a fundamental relationship
between the nonlinear advection term and the pressure:

V- ((u-V)u) = —Ap (12)
It is easy to see (exercise) that then we can solve for p and obtain
— —1(,2 2
p=—A""(ui, + 2uggury + u2y) (13)

Note that this equation is sometimes rewritten by introducing the matrix

Vu defined as
V’I,L — ( ul:lt uly ) s
U2 U2y

from which follows the trace formula
tr(Vu)?) = u?, + 2ug,ury + u%y (14)

With this notation, we can rewrite the original Navier-Stokes equations in
pressure-free form

u + (u-V)u = kAu+ VA tr((Vu)?) (15)

3.3 Leray formulation

We can also use the above relationship between nonlinearity and pressure
in its original form

p=—A"N V" ((u-V)u))



and eliminate the pressure term by writing
ug + (1 — VATV ((u - V)u) = kAu (16)
The operator P defined by
P=1-vA~lv. (17)

projects a vector field onto its divergence-free part. This follows by direct
calculation from

V- (Pv)=V-v-V-(VAT'V.0) =0

If we using the Hodge-decomposition by writing w = Pw + V¢ we can
consider an equation for the field w given by

wt + ((Pw) - V)(Pw) = kAw (18)

which is equivalent to Navier-Stokes if we set © = Pw. Note that the
field w is in general compressible. The physical pressure is then given by

p= ¢t — KA.



