Problem 1 (10 points)

Consider the heat equation

$$
u_{t}=\kappa u_{x x}, \quad u(t=0, x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}
$$

1. Write a MATLAB code that implements the explicit Euler scheme to solve the equation.
2. Write a MATLAB code that implements the implicit Euler scheme to solve the equation.
3. Compare the two methods in terms of stability and accuracy.

Problem 2 (10 points)

1. Consider the cubic nonlinear Schrödinger equation

$$
i u_{t}+u_{x x}+2|u|^{2} u=0
$$

and use direct substitution to show that the following function is a solution:

$$
u(t, x)=\frac{\lambda}{\cosh (\lambda x)} \mathrm{e}^{i \lambda^{2} t}
$$

2. Show that the viscous Burger's equation $u_{t}+u u_{x}=\kappa u_{x x}$ can be linearized using the Cole-Hopf transfomation

$$
u=-2 \kappa \frac{\phi_{x}}{\phi}
$$

meaning that u satisfies the above equation if ϕ satisfies a heat equation.

Problem 3 (10 points)

Consider the following partial differential equation (PDE) for $p=p(x, t)$

$$
p_{t}=\partial_{x}(k x p)+\frac{\sigma^{2}}{2} p_{x x}, \quad p(x, t=0)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}
$$

1. Show that $\int_{-\infty}^{\infty} p(x, t) d x$ is a conserved quantity.
2. Find a stationary solution of the above PDE.
3. Discretize the PDE in space and derive a system of (coupled) ordinary differential equations. Solve these equation using a 4 -th order Runge-Kutta. Compare the solution to the stationary solution.
