Problem 1 (10 points)

1. Solve the transport equation using Fourier transform:

$$
u_{t}+v u_{x}=0, \quad u(t=0, x)=f(x) .
$$

2. Compute the convolution of the two Gaussians f and g analytically:

$$
f(x)=\mathrm{e}^{-3 x^{2}}, \quad g(x)=\mathrm{e}^{-4 x^{2}}
$$

Then write a MATLAB code that, using FFT, computes the convolution numerically and compare the results.

Problem 2 (10 points)

1. Consider $f(x)=\exp (2 x)$ in $[0,1]$ and compute the Fourier cosine series.
2. Consider f given by

$$
f(x)= \begin{cases}1 & 0 \leq x \leq \pi / 2 \\ 2 & \pi / 2<x \leq \pi\end{cases}
$$

and compute the Fourier sine expansion. Using matlab, plot the function itself and also its 10th and 30th partial sum.

Problem 3 (10 points)

1. Show that

$$
\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-2 \alpha \sqrt{s}}}{s}\right)=\operatorname{erfc}\left(\frac{\alpha}{\sqrt{t}}\right)
$$

Here, $\operatorname{erfc}(x)=1-\operatorname{erf}(x)=1-\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{e}^{-u^{2}} d u$ is the complementary error function.
2. Solve the following partial differential equation given on $x>0$ and $t>0$ using Laplace transform:

$$
u_{t}=\kappa u_{x x},
$$

and conditions $u(0, t)=u_{0}=$ const. for $t>0$ and $u(x, 0)=0$ for $x>0$.

