Problem 1 (10 points)

Consider a force field $\vec{F}(x, y)=-y \vec{i}+x \vec{j}$ in the plane and a curve \mathcal{C} given by $x(t)=a \cos (t)$ and $y(t)=b \sin (t)$ with $0 \leq t \leq \pi$ and positive constants a and b.

1. Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$ using the definition of the line integral. Does \vec{F} have a potential?
2. Let a different force field be given by $\vec{G}=2 x y \vec{i}+\left(x^{2}-y^{2}\right) \vec{j}$. Does \vec{G} have a potential? If yes, find the potential of \vec{G}.
3. Calculate $W=\int_{\gamma} \vec{G} \cdot d \vec{r}$ where γ is the semi-circle connecting the points $(0,-1)$ and $(0,1)$. Use again the definition of the line integral.
4. Calculate W again by using a line integral connecting the above points. Can you think of a third way to get W easily?

Problem 2 (10 points)

1. Find the Laurent series for the following function

$$
f(z)=\frac{1}{z^{2}-(2+i) z+2 i}
$$

2. The complex Bessel function $J_{n}(z)$ of order n can be defined for an integer n by

$$
\mathrm{e}^{z(w-1 / w) / 2}=\sum_{n=-\infty}^{\infty} J_{n}(z) w^{n}
$$

Hence, $J_{n}(z)$ is the coefficient of w_{n} in the Laurent series of $\exp (z(w-1 / w) / 2)$, as a function of w, about 0 .
(a) Use the integral formula for Laurent coefficients to show that

$$
J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-z \sin \theta) d \theta
$$

(b) Write

$$
\mathrm{e}^{z(w-1 / w) / 2}=\mathrm{e}^{z w / 2} \mathrm{e}^{-z /(2 w)}
$$

and multiply the series expansions of these function about 0 to obtain

$$
J_{n}(z)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!(n+k)!}\left(\frac{z}{2}\right)^{n+2 k}
$$

Problem 3 (10 points)

Suppose that $f=u+i v$ is a complex-valued function that is continuous and has continuous first partial derivatives. Use a complex parametrization $z=\gamma(t)=x(t)+i y(t)$ to show that

$$
\int_{\gamma} f(z) d z=\int_{\gamma} u d x-v d y+i \int_{\gamma} v d x+u d y
$$

Assume now that γ is closed and that f is analytic. Use Green's Theorem and the CauchyRiemann relations to show that

$$
\int_{\gamma} f(z) d z=0
$$

