Problem 1 (10 points)

Consider the Gamma function $\Gamma(x)$ and the Beta function $B(x)$ defined by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} \mathrm{e}^{-t} d t, \quad B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t
$$

1. Show that $\Gamma(x+1)=x \Gamma(x)$.
2. Show that $B(x, y)=\Gamma(x) \Gamma(y) / \Gamma(x+y)$.
3. A particle of mass m moves in a one-dimensional force field with a potential $V(x)=$ $A|x|^{n}, A, n>0$. Sketch the potential and state the range of energy and position within which bounded oscillations can occur. Determine the period of oscillation as a function of the energy E.

Problem 2 (10 points)

Consider the following eigenvalue problem:

$$
y^{(4)}(x)=\lambda y(x), \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0
$$

1. Find an equation for the eigenmodes of the system.
2. Check your result for the first eigenmode using a Chebyshev-differentiation matrix.

Problem 3 (10 points)

Consider the Chebyshev-polynomials T_{n} and use the recursion formula

$$
T_{n+1}(x)-2 x T_{n}(x)+T_{n-1}(x)=0
$$

and find the corresponding generating function $g(x, t)$.

