Problem 1 (10 points)

Consider energy conservation and conservation of angular momentum for the central force problem given by

$$
\begin{aligned}
E & =\frac{\mu}{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+V(r) \\
L & =\mu r^{2} \dot{\phi}
\end{aligned}
$$

1. Derive a first-order system of ODEs for the vector $(r, \dot{r}, \phi, \dot{\phi})$.
2. Use the Kepler-problem $V(r)=\alpha / r$ and the Kepler-problem with relativistic correction $V(r)=\alpha / r+\beta / r^{2}$ as an example and show using a numerical simulation that the motion leads to an ellipse and precession of elliptical orbits. Hand in your code and a printout of the graph.

Problem 2 (10 points)

Consider the linear inhomogeneous differential equation

$$
\ddot{x}+x=-\cos (t)
$$

and find the general solution using the method of variation of the constants.

Problem 3 (10 points)

Assume in the following that the matrix A can be diagonalized. This means that there exist a matrix M and a diagonal matrix D such that $A=M D M^{-1}$. D contains the eigenvalues of A.

1. Show that $\exp (A)=M \exp (D) M^{-1}$.
2. Assume now that all eigenvalues are positive. Show that

$$
\int_{0}^{\infty} \exp (-s A) d s=A^{-1}
$$

