Problem 1 (10 points)

1. Consider the example of the construction of a Cauchy sequence in $C([0,1)]$ given in the book on page 81 (4.10) and show that, indeed, $\left\|f_{n}-f_{m}\right\| \rightarrow 0$ as $m, n \rightarrow \infty$.
2. Are there functions that are in L^{1} but not in L^{2} ? Are there functions that are in L^{2} but not in L^{1} ?

Problem 2 (10 points)

Assume that A is a self-adjoint operator and that the underlying inner product space is finitedimensional. Consider the eigenvalue problem $A f=\lambda f$.

1. Show that the eigenvalues are real.
2. Show that eigenvectors to different eigenvalues are orthogonal.
3. Assume that B is also self-adjoint. Assume for simplicity that all eigenspaces of A and B have the dimension 1 . Show that A and B commute if and only if they have the same eigenspaces.

Problem 3 (10 points)

Consider the following eigenvalue problem:

$$
L \psi=\lambda \psi, \quad L=-\frac{d^{2}}{d x^{2}}+x^{2}
$$

1. Show that L is self-adjoint.
2. Show that $\psi_{1}(x)=\alpha x \exp \left(-x^{2} / 2\right)$ is an eigenfunction. What is the corresponding eigenvalue λ_{1} ? Find α such that $\left\|\psi_{1}\right\|=1$.
3. Use now a discretized version of the above problem in Matlab in order to find numerically the above eigenfunction ψ_{1} when you prescribe λ_{1}. Compare the numerical solution to the analytical solution. Attach both the corresponding graph and a print-out of your code to your solution.
