
Lecture 4: Bigger Models

(a) Quantos

Basic Model

A quanto is a contract that pays out in a currency that is different from the
currency that the underlying asset is valued. This could be, for example,
and option on a German stock, traded on the German market in Euros,
but the pay off of the option is in USD. In order to price these contracts
correctly, we need to adjust for the exchange rate that, by itself, needs to
be modeled as a stochastic process that, in addition, might be correlated to
the stock process. For our model, the following four quantities will play a
role:

1. The stock price, in EUR, modeled as exponential Brownian motion:

St = S0eσ1W1t+µt .

2. The exchange rate (the value of 1EUR in USD)

Ct = C0eρσ2W1t+ρ̄σ2W2t+νt , ρ̄ =
√

1− ρ2

3. The dollar cash bond (we can set, as usual, B0 = 1) given by

Bt = B0ert .

with a risk-free interest rate r .

4. The Euro cash bond (we can set, as usual, D0 = 1) given by

Dt = D0eut .

with a risk-free interest rate u .

The slightly complicated structure of the exchange rate results from our
intuition that the stock and the exchange rate might be correlated. For the
two independent P-Brownian motions W1 and W2 we have

EP(W1t(ρW1t + ρ̄W2t)) = ρt (1)

and ρW1t + ρ̄W2t is clearly itself a P-Brownian motion (exercise!). Since the
pay off of the option we would like to price is in USD, we need to apply the
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exchange rate Ct in order to convert assets in EUR to their corresponding
value in USD. The resulting quantities can then be hedged appropriately
in the US market and, as usual, we need to take into account the discount
factor given by the USD bond. Hence we need to consider the two processes
Yt and Zt defined by

Yt = B−1
t CtDt = B−1

0 D0C0eρσ2W1t+ρ̄σ2W2t+(ν+u−r)t , (2)

Zt = B−1
t CtSt = B−1

0 C0S0eσ1W1t+ρσ2W1t+ρ̄σ2W2t+(ν+µ−r)t (3)

Applying Ito to both processes, we find

dYt = Yt

(
ρσ2dW1t + ρ̄σ2dW2t +

(
ν + u− r +

1

2
σ2

2

)
dt

)
,

dZt = Zt ((σ1 + ρσ2)dW1t + ρ̄σ2dW2t

+

(
µ+ ν − r +

1

2
σ2

1 + ρσ1σ2 +
1

2
σ2

2

)
dt

)
In order to change to a drift-free measure, we can use again the Girsanov
theorem, just in a multi-dimensional setting. Let’s see whether we can
define drifts γ1t and γ2t and Q-Brownian motions W̃1t = W1t + γ1t and
W̃2t = W2t + γ2t such that, under the new measure Q, the processes Yt and
Zt are drift-free. Under the new measure Q, we can write the stock price
and the exchange rate as

St = S0 eσ1W̃1t+(u−ρσ1σ2−σ2
1/2)t, (4)

Ct = C0 eρσ2W̃1t+ρ̄σ2W̃2t+(r−u−σ2
2/2)t (5)

Assume we would like to price a digital claim that pays a dollar if the stock
ST > K. This contract has the price

V0 = e−rTQ(ST < K) . (6)

Introducing F = S0euT (the local forward price), and FQ = F e−ρσ1σ2T , the
quanto forward price, we can see easily that

V0 = e−rTΦ

(
ln(FQ/K)− σ2

1T/2

σ1

√
T

)
(7)

The details of the derivation of this formula are left as an exercise.
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(b) Interest Rate Models and the HJM Framework

Interest Rates

We have met interest rates before: So far, we assumed that the cash bond
Bt evolves as a simple exponential of the form

Bt = B0 ert, B0 = 1

with a constant interest rate r. In reality, the situation is far more compli-
cated: First, interest rates are random (so we need to introduce a variable
interest rate rt) and, second, there are more complex assets related to the
interest market than the basic cash bond. Let’s start by introducing the
discount bond, a contract, initiated at t = 0 to deliver $1 at maturity T .
Clearly, the larger T , the smaller the price of the discount bond is - after
all it is better to have money sooner than later. But once this contract is
initiated it can still be bought or sold, so its value changes in time t, until
it reaches $1 at t = T . Therefore, the price of the discount bond depends
on two variables, we can write P (t, T ), knowing that P (T, T ) = 1. While
P (t = 0, T ) is usually a rather smooth, decreasing function, we expect P to
vary randomly with respect to t. Moreover, the value of P needs to have an
impact on the current interest rate rt which determines the evolution of the
cash bond.
We start with introducing several useful terms - some of them are equivalent
to P , but still very useful. First assume for a moment again that the interest
rates were constant. Then, clearly, we would have P (t, T ) = exp(−r(T − t))
or r = − ln(P (t, T ))/(T−t). This leads to the definition of the yield R(t, T ),
generalizing this relationship to non-constant rates:

R(t, T ) = − lnP (t, T )

T − t
(8)

Setting T = t+ δt and looking at the short term yield leads to the definition
of the instantaneous interest rate (or short rate):

rt = lim
δt→0

R(t, t+ δt) = − lnP (t, t+ δt)

δt
= − ∂

∂T
lnP (t, t) (9)

where we have used the fact that P (t, t) = 1. This definition can be extended
to define the forward rate as

f(t, T ) = − ∂

∂T
lnP (t, T ), P (t, T ) = e−

∫ T
t f(t,u) du (10)
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A short calculation shows that

f(t, T ) = R(t, T ) + (T − t)∂R(t, T )

∂T
. (11)

A simple model

As a first start, let’s write down a model for the forward rate and then try
to develop a framework to price derivatives. At time t = 0 we are given
as an initial condition f(0, T ) and a simple model should capture at least
random and deterministic changes of the forward rate. Thus we try

dtf(t, T ) = σdWt + α(t, T )dt, (12)

or, equivalently after direct integration

f(t, T ) = f(0, T ) + σWt +

∫ t

0
α(s, T ) ds . (13)

Note that this also implies a model for the interest rate as rt = f(t, t). We
find

rt = f(0, t) + σWt +

∫ t

0
α(s, t) ds . (14)

As for the stock market, we need two assets to from a tradable and we
choose the cash bond Bt and the discount bond P (t, T ) for a fixed T . Then,
as before, we can form the discounted process

Zt = B−1
t P (t, T ) (15)

and use the Girsanov theorem to construct a risk-neutral measure. To do
so, however, we need to compute the drift of dZt. This calculation is not
difficult, but slightly technical: We first find Bt and P (t, T ) explicitly by
integration, then we apply Ito to find dZt. Remember that the cash bond
and short rate satisfy the equations

dBt = rtBt dt, rt = f(0, t) + σWt +

∫ t

0
α(s, t) ds . (16)

We can directly integrate the equation for rt and find∫ t

0
rs ds =

∫ t

0
f(0, u) du+ σ

∫ t

0
Ws ds+

∫ t

0

∫ t

s
α(s, u)duds (17)
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Please take a minute to check the last term - you need to show that∫ t

0

∫ u

0
α(s, u)dsdu =

∫ t

0

∫ t

s
α(s, u)duds .

Putting everything together (no Ito-complications here!) we find

Bt = e
∫ t
0 f(0,u) du+σ

∫ t
0 Ws ds+

∫ t
0

∫ t
s α(s,u)duds (18)

In order to find an explicit representation for the discount bond, we need to
calculate∫ T

t
f(t, u) du = σ(T − t)Wt +

∫ T

t
f(0, u)du+

∫ t

0

∫ T

t
α(s, u)duds (19)

and we obtain for P (t, T )

P (t, T ) = e−(σ(T−t)Wt+
∫ T
t f(0,u)du+

∫ t
0

∫ T
t α(s,u)duds) . (20)

Putting everything together, this yields

Zt = B−1
t P (t, T ) = eht (21)

where

ht = −
∫ t

0
f(0, u) du− σ

∫ t

0
Ws ds−

∫ t

0

∫ t

s
α(s, u)duds

−σ(T − t)Wt −
∫ T

t
f(0, u)du−

∫ t

0

∫ T

t
α(s, u)duds

= −
(
σ(T − t)Wt + σ

∫ t

0
Ws ds+

∫ T

0
f(0, u)du+

∫ t

0

∫ T

s
α(s, u)duds

)
.

Applying Ito to Zt (using the product rule for the term tWt), we find

dZt = Zt

(
−σ(T − t)dWt −

(∫ T

t
α(t, u)du

)
dt+

1

2
σ2(T − t)2 dt

)
= −σ(T − t)Zt(dWt + γtdt)

where we have introduced the drift term

γt = −1

2
σ(T − t) +

1

σ(T − t)

∫ T

t
α(t, u) du (22)
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From here, we can directly proceed to use the Girsanov theorem to construct
a risk-neutral measure Q.
There is one additional aspect that we need to take into account: In our
calculation we chose an arbitrary, but fixed maturity T . Clearly we could
have chosen any other T̃ and done the calculations for the corresponding
discounted process Z̃t. Both Zt and Z̃t are tradables and the measure Q
should not depend on the choice of T or T̃ . Otherwise, arbitrage possibilities
will arise. Thus, we need to have the drift γt be independent of T , hence
our model needs to satisfy the condition

∂γt
∂T

= 0 (23)

If we multiply the expression for γt by (T − t) and take the derivative we
find

γt = −σ(T − t) +
1

σ
α(t, T )

or, the same statement re-arranged nicely

α(t, T ) = σ2(T − t) + σγt (24)

We can now go back to the model for the forward rate: Using the Girsanov
theorem to find dW̃t = dWt + γtdt, we have

dtf = σdWt + α(t, T )dt

= σdWt + (σ2(T − t) + σγt) dt

= σdW̃t + σ2(T − t) dt .

For the forward rate and the instantaneous rate, we find

f(t, T ) = σW̃t + f(0, T ) + σ2(2T − t)t/2, rt = σW̃t + f(0, t) +
1

2
σ2t2 .

The Heath-Jarrow-Morton Framework

The above restriction on the drift to avoid arbitrage is a typical feature
of modeling the interest market. In a straightforward way, we can extend
this analysis to more complicated models, where the forward rate is given
by

dtf(t, T ) = σ(t, T )dWt + α(t, T ) dt . (25)

Again we find for the interest rate by direct integration

rt = f(0, t) +

∫ t

0
σ(s, t)dWs +

∫ t

0
α(s, t) ds (26)
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and we can form the cash bond process Bt and the discount bond P (t, T )

Bt = e
∫ t
0 rs ds , P (t, T ) = e−

∫ T
t f(t,u) du

to set up the discounted process Zt = B−1
t P (t, T ). Introducing the Σ(t, T )

as

Σ(t, T ) = −
∫ T

t
σ(t, u) du (27)

it is easy to show (exercise!) that the corresponding drift is now

γt =
1

2
Σ(t, T )− 1

Σ(t, T )

∫ T

t
α(t, u) du . (28)

As restriction we obtain

α(t, T ) = σ(t, T ) (γt − Σ(t, T )) (29)

which implies for f(t, T ) under the risk-neutral measure

dtf(t, T ) = σ(t, T )dW̃t − σ(t, T )Σ(t, T )dt (30)

Pricing derivatives follows now the usual mechanics by applying the martin-
gale representation theorem. Again, choosing a maturity T for the discount
bond, we can price a claim X depending on P (t, T ) with a maturity S < T .
As usual, we will form

Et = EQ
(
B−1
S X|Ft

)
(31)

and hold φt units of the T -bond at time t and ψt = Et − φtZt units of the
cash bond. The value of the portfolio will be

Vt = BtEt = BtEQ
(
B−1
S X|Ft

)
= EQ

(
e−

∫ S
t ru duX|Ft

)
(32)

This formula extends in a trivial way to the S-bond itself: Such a bond is a
claim X = 1 with maturity S. Hence we have

P (t, S) = EQ

(
e−

∫ S
t ru du|Ft

)
(33)
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Short Rate Models

In short rate models, one specifies the interest dynamics rt using the risk-
neutral measure Q. These models fall into the HJM frame work, as we can
always construct from the short rate model (given by rt) a volatility surface
σ(t, T ) such that (30) is satisfied. Assume that we are give a model for rt of
the form

drt = ρ(rt, t)dW̃t + ν(rt, t)dt (34)

then we can recover f(t, T ) in the following way: We know that the price
P (t, T ) of the discount bond is related to the forward rate by∫ T

t
f(t, u)du = − lnP (t, T ) = − lnEQ

(
e−

∫ T
t ru du|Ft

)
. (35)

We can think of the last expression in this equation as a function g =
g(x, t, T ) evaluated at x = rt, hence define

g(x, t, T ) = − lnEQ

(
e−

∫ T
t ru du|rt = x

)
, f(t, T ) =

∂g

∂T
(rt, t, T ) (36)

and this function depends on rt. From the HJM framework we know that

dtf(t, T ) = σ(t, T )dW̃t − σ(t, T )Σ(t, T )dt

and we can use Ito’s lemma to find a second expression for dtf(t, T );

dtf(t, T ) =
∂2g

∂x∂T
(ρ(rt, t)dW̃t + ν(rt, t)dt) +

∂2g

∂t∂T
dt+

1

2

∂3g

∂x2∂T
ρ2(rt, t)dt

(37)
Comparing the volatilities in the two representations, we find that

σ(t, T ) = ρ(rt, t)
∂2g

∂x∂T
(rt, t, T ) (38)

Σ(t, T ) = −ρ(rt, t)
∂g

∂x
(rt, t, T ) . (39)

In the second expression, we simply used the definition of Σ.
The simplest short rate model is the Ho and Lee model where we have
constant volatility σ and a deterministic drift θt:

drt = σdWt + θtdt . (40)

We can use (36) in order to compute the function g(x, t, T ) (exercise!):

g(x, t, T ) = x(T − t)− 1

6
σ2(T − t)3 +

∫ T

t
(T − s)θs ds (41)
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Clearly, we in HJM terms

σ(t, T ) = σ
∂2g

∂x∂T
= σ (42)

and Σ(t, T ) = −σ(T − t), hence a forward rate f(t, T ) given by

dtf(t, T ) = σdW̃t + σ2(T − t)dt (43)

which is actually the simple model discussed earlier. We now briefly discuss
other models:

1. Vasicek/Hull-White: This model allows the short rate’s drift to
depend on its current value

drt = σdW̃t + (θ − αrt)dt (44)

Clearly, rt will follow an Ornstein-Uhlenbeck process. For large t we
have an equilibrium distribution with mean θ/α and variance σ2/(2α).
Therefore, the process is likely to fluctuate around the mean - however
this model still has the draw-back that negative interest rates are in
principle possible.

2. Cox-Ingersoll-Ross: Here, the multiplicative noise pushes the inter-
est rate away from zero (and the process is mean-reverting as well).

drt = σt
√
rtdW̃t + (θt − αtrt)dt (45)

3. Black-Karasinski Use Ornstein-Uhlenbeck, but then use the expo-
nential to guarantee that the process is positive:

dXt = σtdW̃t + (θt − αtXt)dt, rt = eXt (46)

As a particular example, let us discuss the Cox-Ingersoll-Ross model more
in detail. Below a MATLAB code to simulate paths of this model: An
important feature of the model is that the noise is actually multiplicative
and tends to zero as the interest rate goes to zero. It can be shown that this
prevents the process from taking negative values (for θt ≥ σ2

t ).
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function [t,R] = cir(nSteps,mPaths)

% [t,R] = cir(nSteps,mPaths)

%

% Cox-Ingersoll-Ross model

%

% dr = (theta-a*r)*dt + sig*sqrt(r)*dW

T = 10;

dt = T/nSteps;

a = 2; sig = 1; theta = 2;

t = zeros(1,nSteps+1);

R = zeros(mPaths,nSteps+1);

R(:,1) = 1.5*ones(mPaths,1);

for k=1:nSteps

R(:,k+1) = R(:,k) + (theta - a*R(:,k))*dt ...

+ randn(mPaths,1).*sqrt(R(:,k))*sig*sqrt(dt);

t(k+1) = t(k) + dt;

end

end
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Exercises

1. (10 points) Prove the formulas for St and Ct:

St = S0 eσ1W̃1t+(u−ρσ1σ2−σ2
1/2)t,

Ct = C0 eρσ2W̃1t+ρ̄σ2W̃2t+(r−u−σ2
2/2)t

2. (10 points) Prove the formula for the digital quanto:

V0 = e−rTΦ

(
ln(FQ/K)− σ2

1T/2

σ1

√
T

)
3. (10 points) Consider the general HJM framework and show that

(a) the drift γt is given by

γt =
1

2
Σ(t, T )− 1

Σ(t, T )

∫ T

t
α(t, u) du .

(b) independence of γt from T yields the condition

α(t, T ) = σ(t, T ) (γt − Σ(t, T ))

4. (10 points) Show explicitly that, for the Ho and Lee model, we have

g(x, t, T ) = x(T − t)− 1

6
σ2(T − t)3 +

∫ T

t
(T − s)θs ds
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