
Lecture 3: Mathematical Tools

(a) Random number generators and Monte-Carlo simulations

Normally Distributed Random Numbers

Assume you are given a function rand that returns a uniformly distributed
random number, how would you use it to generate a normally distributed
random number? A quick way is the Box-Muller algorithm:

1. Draw two independent standard uniform random numbers z1 and z2.

2. Compute

x =
√
−2 ln z1 cos(2πz2), y =

√
−2 ln z1 sin(2πz2).

Then, x and y are two independent random numbers that both are dis-
tributed as N (0, 1). The proof is left as an exercise. It is simple to imple-
ment this method in MATLAB:

% boxmuller.m

% demonstrates Box-Muller algorithm to create

% normally distributed random numbers

n = 1e6; z1 = rand(1,n); z2 = rand(1,n);

r1 = sqrt(-2*log(z1)).*cos(2*pi*z2);

r2 = sqrt(-2*log(z1)).*sin(2*pi*z2);

dx = 0.1; x = -10:dx:10; % create x range

ps1 = hist(r1,x); % create histogram, centers at x

ps1 = ps1/sum(ps1)*1/dx; % normalize

ps2 = hist(r2,x); % create histogram, centers at x

ps2 = ps2/sum(ps2)*1/dx; % normalize

plot(x,ps1,x,ps2); % plot

1

If you are surprised that x and y are actually independent, you can type
cov(r1,r2) for a numerical check. In MATLAB, of course, we will di-

rectly use randn to create random numbers, but it is good to know how
such numbers can be generated. If you are interested in random numbers
(and you should be!), please read the corresponding chapter in the book
Numerical Recipes. With normally distributed random numbers at hand,
we can simulate sample paths of any stochastic differential equation of the
form

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt (1)

quite easily with the following algorithm:

1. Start with an initial condition X0 = a

2. To advance a step in time dt, use the discretized version of (1), namely

Xt+dt ≈ Xt + µ(Xt, t)dt+ r · σ(Xt, t)
√
dt (2)

where r ∼ N (0, 1).

Again, intuitively, one might think that it would be better to use a Bernoulli
variable for r, but it turns out that using a normally distributed r is usually
numerically more efficient (except in cases, where unbounded values of r
lead to instabilities, of course).

Monte-Carlo simulation of the Black-Scholes model

As an example, consider the Black-Scholes model with no interest rates
where, using the risk-neutral measure, the stock process St is given as

St = S0e
σW̃t−σ2t/2 . (3)

As we know, the corresponding stochastic differential equation is given by

dSt = σStdWt (4)

and the price V of a European call struck at K is found by computing the
expectation

V = EQ((ST −K)+) . (5)

Therefore, the numerical solutions of the stochastic differential equation (4)
offer also a way to compute the option price: Imagine we are given N paths
of the stock price, then we can compute for each path the realization

V (i) = (S
(i)
T −K)+ (6)

2

and estimate V as the mean, hence

V ≈ 1

N

∑
i

V (i) =
1

N

∑
i

(S
(i)
T −K)+ . (7)

Such a numerical simulation is called a Monte-Carlo simulation: You roll the
dice many times and compute the expectation of an observable by counting.
The following MATLAB code shows how this can be done for the Black-
Scholes model:

function [v, vAna] = euroMC(N)

% euroMC.m Monte-Carlo simulation for Black-Scholes

% no interest rates

S0 = 100; K = 100; sig = 0.2; T = 0.5;

nSteps = 1000; dt = T/nSteps;

S = S0*ones(N,1); % set initial condition

for k=1:nSteps

S = S + S*sig*sqrt(dt).*randn(N,1); % solve SDE

end

v = sum(max(S-K,0))/N; % numerical option price

d1 = (log(S0/K)+sig^2/2*T)/(sig*sqrt(T));

d2 = (log(S0/K)-sig^2/2*T)/(sig*sqrt(T));

Nd1 = 0.5*erfc(-d1/sqrt(2)); Nd2 = 0.5*erfc(-d2/sqrt(2));

vAna = S0*Nd1 - K*Nd2; % analytical option price

end

Playing with the parameter N , the number of sample paths, we see that even
a fairly small number (say N = 10000) gives a good idea of the option price.
However, to obtain an accurate answer, we need many more paths. This
is due to the fact that, usually, Monte-Carlo simulations converge roughly

3

∼ 1/
√
N . And things can get worse: Imagine an option that is far out of

the money (set in the code, e.g. K = 200). Then, again for fairly small
values of N , (say again N = 10000), the numerical simulation will, most
of the time, compute a zero price as there are no ’hits’ in such a sample,
given that it is very unlikely that a stock path reaches that value. Note:
by ’unlikely’ we mean, of course, in terms of the risk-neutral probability
measure. However, there are ways to speed up such simulations by biasing
the noise in a way that the extreme event will be more likely and, on the
other hand, compensating for this bias when computing the expectation.
This technique is called importance sampling and we will discuss it in a later
lecture.

(b) Fourier transform and fast Fourier transform (FFT)

The Fourier Transform

Fourier transforms are used in a wide range of situations, in particular to
compute derivatives. Recall that the Fourier transform f̂ of a function f is
defined as

f̂(ω) =
1√
2π

∫
R
f(x)e−iωx dx (8)

and, knowing the Fourier transform f̂(ω) we can reconstruct the original
function f(x) by its inverse transform

f(x) =
1√
2π

∫
R
f̂(ω)eiωx dω . (9)

With the above convention, the differential operator ∂x is diagonal in Fourier
space and we have

∂x → iω (10)

A typical example is the solution of the heat equation, given for example by

ut =
1

2
uxx, u(t = 0, x) = δ(x) . (11)

In Fourier space, the equation becomes simply

ût = −1

2
ω2û, û(t = 0, ω) = u0(ω) =

1√
2π

(12)

This is a simple ordinary differential equation with the solution

û(t, ω) = exp

(
−1

2
ω2t

)
û0(ω) =

1√
2π

exp

(
−1

2
ω2t

)
(13)

4

and we can find the solution to the original partial differential equation by
solving the inverse integral

u(t, x) =
1√
2π

∫
R
û(t, ω)eiωx dω =

1√
2πt

e−x
2/(2t) . (14)

You might have noticed that this is the probability density of Brownian
motion. In the next section, we will establish a more general relationship
between stochastic differential equations for a stochastic process Xt and the
related partial differential equation governing the evolution of the probability
density p(x, t) of this stochastic process Xt.

The Fast Fourier Transform (FFT)

While many Fourier transforms can be carried out analytically (in par-
ticular using tools from complex analysis like the residue theorem), we can
also compute Fourier transforms numerically. Intuitively, this means to look
for an efficient approximation of the Fourier integral

f̂(ω) =
1√
2π

∫
R
f(x)e−iωx dx .

Assume that we have a function that is sampled at N points, hence we have
the set {f0, f1, ..., fN−1} given by

xj = j ·∆x, fj = f(xj) j = 0, ..., N − 1 . (15)

We assume now that f is periodic on [0, L], such that fN = f0 if we sampled
f at the right boundary as well, which is due to periodicity unnecessary.
Then, it is easy to see that this corresponds to a sampling in frequency
space at frequencies

ωj =
2πj

L
=

2πj

N ·∆x
, j = 0, ..., N − 1 (16)

The Fourier integral over one period becomes∫ L

0
f(x)e−iωnx dx ≈

N−1∑
j=0

fje
−iωnxj∆x

=

N−1∑
j=0

fje
−2πijn/N∆x = Fn∆x

5

where Fn is the discrete Fourier transform of the vector given by the samples
of f as (f0, f1, ..., fN−1), defined by

Fn =
N−1∑
j=0

fje
−2πijn/N (17)

For the discrete transform, it is easy to see that we can obtain (f0, f1, ..., fN−1)
from (F0, F1, ..., FN−1) by the appropriate inverse transform:

fn =
1

N

N−1∑
j=0

Fje
2πijn/N (18)

This is a simple consequence of the periodicity properties of the complex
exponential function:

1

N

N−1∑
j=0

N−1∑
j′=0

fj′e
−2πij′j/N

 e2πijn/N =
1

N

N−1∑
j′=0

N−1∑
j=0

fj′e
2πij(n−j′)/N

=
N−1∑
j′=0

fj′δj′n = fn

Note that, in practice one usually chooses frequencies

ωn =
2πn

L
=

2πn

N ·∆x
, j = −N

2
+ 1,−N

2
+ 2, ..., 0, ...,

N

2
(19)

as it turns out to be very convenient to work with frequencies that are
negative and positive.

So far, there is nothing exceptional about this transform - it appears to be
simply a discretization of the continuous integral. Moreover, as intuitively it
should, we need to sum up N terms to compute each frequency, hence for the
computation of N frequencies we will need N2 operations. Note that, in real
applications, N can easily be large. In computational fluid dynamics (short
CFD), a typical resolution is 210 = 1024 grid points for each dimension. For
a cube, we have then N = 10243 and N2 = 10246 operations to perform
one single Fourier transform. The fantastic news is that, in fact, the above
sums can be computed recursively bringing down the number of operations
to the order O(N logN). For the above example, this results in a different
of eight orders of magnitude in the number of computational operations.
This recursive algorithm is called fast Fourier transform (short FFT).

6

Computing derivatives using the FFT

We will not present details of the implementation (again, Numerical Recipes
is a great source for more information about the FFT), but show how to use
the FFT in MATLAB. A simple task is, for example, the computation of a
derivative using FFT. Have a look at the following code:

% diffFFT Compute the derivative using fft

N = 128; % number of grid points

% Set up computational grid

xMin = -10; xMax = 10; xDomain = xMax-xMin;

x = linspace(xMin, xMax-xDomain/N, N);

% Fourier space discretization

dom = 2*pi/xDomain; om = [0:N/2,-N/2+1:-1]*dom;

f = exp(-x.^2);

fnumF = 1i*om.*fft(f);

fnum = real(ifft(fnumF));

fana = -2.*x.*exp(-x.^2);

% plot results

plot(x,fnum,x,fana,’o’)

Also, you can see that we have computed the derivative with spectral ac-
curacy: The difference between the analytical and the numerical values is
of the order of machine accuracy. When using the FFT, one has to pay
attention to the fact that, due to the recursive computation, the computed
vector containing the elements of the Fourier transform is in a non-intuitive
order: The vector starts at the zero-frequency mode, contains all the positive
modes in inceasing order and then switches to the most negative frequency
and continues again in increasing order. The one-line MATLAB version of
the order of the frequency is

7

dom = 2*pi/xDomain; om = [0:N/2,-N/2+1:-1]*dom;

It is much more efficient to pre-order the frequencies and then to use them
in the FFT-adapted order then to reorder them. A second caveat is that
there are frequency phase factors that, sometimes, need to be taken into
consideration. We will see this in the next section when using the FFT to
compute a convolution.

Convolutions and FFT

In a second example, we show how to compute a convolution using FFT.
Recall that the convolution u ? v of two functions u and v is defined as

f(x) = (u ? v)(x) =

∫
u(x̃)v(x− x̃) dx̃ (20)

As you know probably from a previous class: The Fourier transform of the
convolution is simply the product of the Fourier transforms (with a constant
C that depends on the chosen normalization of the Fourier transform):

f̂(ω) = Cû(ω)v̂(ω) (21)

Therefore, it is convenient and fast to use the FFT in order to compute
convolutions. Here is a code to see how this is done:

% convFFT Compute the convolution of two Gaussians using fft

% Set up computational grid

xMin = -10; xMax = 10; xDomain = xMax-xMin;

x = linspace(xMin, xMax-xDomain/N, N); dx = x(2)-x(1);

% Fourier space discretization

dom = 2*pi/xDomain; om = [0:N/2,-N/2+1:-1]*dom;

phase = dx*exp(-1i*om.*xMin);

u = exp(-x.^2); v = exp(-2*x.^2);

fnumF = fft(u).*fft(v).*phase;

fnum = real(ifft(fnumF));

fana = sqrt(3*pi)/3*exp(-2/3*x.^2);

plot(x,fnum,x,fana,’o’)

8

As a last example on how to use the Fourier transform, we show how to
compute the solution of the heat equation with δ(x) as initial condition.
Note that this example can be adapted easily to deal with any initial condi-
tion (as long as its Fourier transform exists and as long as we have sufficient
decay to not have to worry too much about boundary conditions.

% diffFFT Solve heat equation using fft

N = 128; % number of grid points

t = 2.0; % evolution time

% Set up computational grid

xMin = -10; xMax = 10; xDomain = xMax-xMin;

dx = xDomain/N;

x = linspace(xMin, xMax-dx, N);

% Fourier space discretization

dom = 2*pi/xDomain; om = [0:N/2,-N/2+1:-1]*dom;

f = zeros(1,N); f(N/2+1) = 1/dx; % discretized delta

fnumF = fft(f).*exp(-om.^2*t/2); % propagate Fourier modes

fnum = real(ifft(fnumF)); % inverse transform

fana = 1/sqrt(2*pi*t)*exp(-x.^2/(2*t)); % analytical solution

% plot results

plot(x,fnum,x,fana,’o’)

9

(c) The Fokker-Planck equation and path integrals

The Fokker Planck equation

In this section, we develop a description of the dynamics of a stochastic
process in terms of its probability density. We have already seen that, for
simple Brownian motion Xt = Wt, the associated probability density p(t, x)
is given by

p(t, x) =
1√
2πt

e−x
2/(2t) (22)

and we also have observed that p is a solution to the heat equation given by

pt =
1

2
pxx, p(t = 0, x) = δ(x) . (23)

This result can be explained and generalized in the following way. Consider
again the simple case of additive noise and an SDE of the form

dXt = f(Xt)dt+ σdWt (24)

In order to derive an evolution equation for the probability density p of the
process Xt, we compute the time evolution of the expectation of an arbitrary
function g of Xt, hence

d

dt
E(g(Xt)) =

∫
∂

∂t
(p(t, x))g(x)dx ≡

∫
ptg(x)dx (25)

Alternatively, we can also compute for a small ∆t the expectation E(∆g(Xt))
using Ito’s lemma. Here, we compute first E(∆g(Xt)) and then divide by
∆t. Ito’s lemma yields

∆g(Xt) = gx (f(Xt)∆t+ σ∆W) +
1

2
gxxσ

2∆t

In order to compute E(∆g(Xt)), we first use p(t, x) as probability density
of Xt and then we take one more step ∆t where we draw a random number
±
√

∆t with probability 1/2 to account for the Brownian increment ∆W .
Putting everything together, we obtain

E(∆g(Xt)) =
1

2

∫
p(t, x)

(
gx

(
f(x)∆t+ σ

√
∆t
)

+
1

2
gxxσ

2∆t

)
dx

+
1

2

∫
p(t, x)

(
gx

(
f(x)∆t− σ

√
∆t
)

+
1

2
gxxσ

2∆t

)
dx

=

∫
p(t, x)

(
gx (f(x)∆t) +

1

2
gxxσ

2∆t

)
dx

10

Under mild assumptions on the function g to make sure that boundary terms
vanish, we can now integrate by parts. Thus, we find that∫ (

pt + ∂x(pf)− σ2

2
pxx

)
g(x) dx = 0 , (26)

and, since g is arbitrary, we have derived a partial differential equation de-
scribing the evolution of the probability density p(t, x), the so-called Fokker-
Planck equation that corresponds to the original SDE.

∂tp(t, x) = −∂x(p(t, x)f(x)) +
σ2

2
pxx (27)

Clearly, for f = 0 and σ = 1 we obtain the heat equation corresponding to
the evolution of the probability density of Brownian motion.

Path Integrals

We have already seen that, for stochastic differential equations driven by
Brownian motion, the corresponding Fokker-Planck equation describing the
evolution of the probability density offers an alternative approach to fully
describe the dynamics of the associated stochastic process. A third, and for
physicists very appealing way, are path-integrals. The basic idea here is to
start again from a discretization of the SDE and to consider a discretized
time evolution up to a time T in N steps, where ∆t = T/N is assumed to be
small (and we are interested in the limit ε→ 0). In a numerical simulation,
at each time step, we will draw a random number, and the corresponding
vector of random numbers will characterize a Brownian path. The SDE
maps this path onto a solution Xt of the SDE and we can try to describe
this map in terms of the related probability densities. For simplicity, we
consider for now a one-dimensional SDE with additive noise, hence

dXt = f(Xt)dt+ σdWt, Ẋt = f(Xt) + σξt . (28)

The form on the right is called Langevin form of the stochastic equation and
is popular in the physics literature. The ”derivative” of Brownian motion
ξt = dWt/dt is called white noise and can be understood intuitively as a
stationary stochastic process with variance 1/∆t when working with time
intervals that are spaced ∆t apart. While it might seem from a mathematical
perspective troublesome that this variance tends to infinity for ∆t→ 0, this
is actually not a problem as all, since the Langevin form is really just a

11

different way of writing the original SDE and its discretization at the n-th
time step

Xt+δt −Xt

∆t
= f(Xt) + σξn = f(Xt) + σ · rn

1√
∆t

, rn ∼ N(0, 1) (29)

is of course entirely equivalent to the discretization of the original SDE as
one seems after multiplying the equation with ∆t. It is simply a matter of
taste which notation to use.
To develop a path integral formalism to describe the probability density of
a path X1, ..., XN , we recall that, in general, for a N -dimensional vector of
Gaussian variables (χ1, ..., χN), the joint probability density is given by

P ((χ1, ..., χN)) =
1

(2π)N/2
1√
|A|

exp

−1

2

N∑
n,m=1

χnA
−1
nmχm

 , (30)

where E(χnχm) = Anm is the covariance matrix. In our case, the vector
(ξ1, ..., ξN) consists of independent (hence uncorrelated) random numbers,
and we obtain the much simpler formula describing the joint probability
density of the vector (ξ1, ..., ξN) with E(ξnξm) = 1/∆tδnm

P ((ξ1, ..., ξN)) =

(
∆t

2π

)N/2
exp

(
−1

2

N∑
n=1

ξ2n∆t

)
. (31)

While we have not done much (so far!), we have reformulated and rewritten
our previous results an a very particular form. In the above expression, a
term

N∑
n=1

ξ2n∆t

and, again from a physics point of view, it is very tempting to try to go to
a continuous limit of the form

N∑
n=1

ξ2n∆t →
∫ T

0
ξ2t dt

This defines then, in the continuum limit, the probability density of a Brow-
nian path (without normalization factors) as

P(ξt) = exp

(
−1

2

∫ T

0
ξ2t dt

)
(32)

12

where ∆t → 0 such that N∆t = T is fixed. It is fine to feel, at this
stage, slightly uncomfortable with this construction, in particular as we
have, implicitly, introduced infinitely many integration variables. Think,
for instance, about the normalization of the probability density P in the
finite-dimensional world. Clearly, we have

1 =

∫
Rn
P ((ξ1, ..., ξN)) dξ1, ..., dξN

=

∫
Rn

(
∆t

2π

)N/2
exp

(
−1

2

N∑
n=1

ξ2n∆t

)
dξ1, ..., dξN .

How would we even write the continuum limit of this formula (even if we
are not worried about its mathematical meaning)? This is how it is done:
We need to consider the set C([0, T]) of all possible Brownian paths over the
time interval [0, T] and write therefore

1 =

∫
C([0,T])

P(ξt)Dξt =

∫
C([0,T])

exp

(
−1

2

∫ T

0
ξ2t dt

)
Dξt (33)

where all the normalization factors (and the infinitely many differentials)
got ”absorbed” in the symbol Dξt. Starting from this expression, we can
now easily find a description of the path integral for a general SDE. Consider
again the discretization at the n-th time step

Xn −Xn−1
∆t

= f(Xt) + σξn

All we need to do is to solve this equation ξn and put the result into the
joint probability density and take the continuum limit. Hence look at

ξn =
1

σ

(
Xn −Xn−1

∆t
− f(Xt)

)
(34)

and, therefore at

N∑
n=1

ξ2n∆t =

N∑
n=1

1

σ2

(
Xn −Xn−1

∆t
− f(Xt)

)2

∆t→ 1

σ2

∫ T

0
(Ẋt − f(Xt))

2 dt

As mentioned before, this corresponds to a change of variables, mapping the
Brownian path (ξ1, ...ξN) to a solution of the SDE given by (X1, ..., XN).
Multi-dimensional calculus tells us that we need to compute also the asso-
ciated Jacobian J = |∂ξn/∂Xm|. Fortunately, in the above discretization

13

(also called pre-point discretization), it turns out that J is a constant that
can, again, be ’absorbed’ in the correct normalization. This is simply to see
by looking at (34) and computing the corresponding partial derivatives:

∂ξn
∂Xn

=
1

σ
,

∂ξn
∂Xm

= 0 for m > n (35)

The latter equation simply reflects that, due to the pre-point discretization,
ξn does not depend on Xm if m > n. Therefore, we find simply J = 1/σN .
Note that, for other discretizations, the Jacobian J is not necessarily that
simple. If we choose to discretize the SDE in the Stratonovich interpretation,
we need to evaluate f at the midpoint, hence compute f((Xn + Xn−1)/2)
which will complicate things.
Usually, we use path integrals to compute transition probabilities. For ex-
ample, consider a stochastic process Xt starting at the value X0 = a at
time t = 0 and we are interested in the probability of XT = x at time T .
Let’s denote the corresponding probability density by p(x, T |a, 0). Then, in
the path integral formulation, we need to take all paths C([x, T |a, 0]) into
consideration and we can write

p(x, T |a, 0) =

∫
C([x,T |a,0])

exp

(
− 1

2σ2

∫ T

0
(Ẋt − f(Xt))

2dt

)
DXt (36)

How do we compute path integrals? The honest answer is that, most of the
time, we actually don’t compute them - we approximate their value. In many
situations arising in physics, we are interested in the limit of small noise.
Physically this is often a very complicated situation: If noise is strong, it
will dominate and ’wipe’ out most deterministic structures. If noise is small,
deterministic effects will govern most of the dynamics, but the influence of
small noise is often highly nontrivial: For example, in metastable systems,
noise can make the transition between stable fix points possible that, in the
purely deterministic case, are entirely forbidden. While many mathematical
tools in the realm of classic perturbation either fail or are difficult to apply,
the path integral formulation is very suited to describe the behavior for
σ → 0: From the representation (36) it is clear that, in the limit of small
noise, the path with the smallest value of the action S defined by

S =
1

2

∫ T

0
(Ẋt − f(Xt))

2dt (37)

will dominate the probability density and, if we are lucky, we might even
obtain a decent approximation by only taking this path into account. If we

14

call this minimum action path xc (for ’classical’ trajectory), we find as an
approximation of the transition probability density p(x, T |a, 0)

p(x, T |a, 0) ≈ φ(t)e−
1

2σ2

∫ T
0 L(xct,ẋct)dt , L(x, ẋ) =

1

2
(ẋ− f(x))2 (38)

where we also defined the Lagrangian L under the integral of the action
functional and the function φ can be found by the normalization constraint
that ∫

p(x, T |a, 0)dx = 1 (39)

In the next section, we will show how to carry out these computations in a
concrete case using the example of the Ornstein-Uhlenbeck process.

The Ornstein-Uhlenbeck Process

While the SDE dXt = dWt, X0 = 0 describes Brownian motion, introducing
a very simple (linear) drift of the for f(Xt) = −kXt, k > 0 changes the
stochastic dynamics tremendously. The SDE

dXt = −kXt dt+ σdWt, X0 = a (40)

defines the Ornstein-Uhlenbeck process, a stochastic process that presents
as one of the most prominent examples in the fields of stochastic differential
equations. The associated Fokker-Planck equation is given by

∂p = k(xp)x +
σ2

2
pxx, p(t = 0, x) = δ(x− a) (41)

and, while the exact solution of this equation using Fourier transform is
possible, it is slightly tedious. However, we can see immediately that the
Fokker-Planck equation allows for a solution that is stationary and a simple
calculation shows that this stationary solution is Gaussian. Concerning the
path integral, we see that the associated Lagrangian is

L(x, ẋ) =
1

2
(ẋ+ kx)2 (42)

If we want to find the minimum action path, we need to solve the Euler-
Lagrange equations subject to appropriate boundary conditions:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, ẍ = k2x (43)

15

Let us, for example compute the transition probability to go from x = 0 at
t = 0 to the point x at time t. Parametrizing the classical trajectory xc with
s, we find that we need to solve for xc = xc(s) the equation

ẍc = k2xc, xc(0) = 0, xc(t) = x . (44)

After a few lines of calculation, we find that

xc(s) =
eks − e−ks

ekt − e−kt
· x (45)

and the semi-classical approximation leads to

p(x, t|0, 0) = φ(t) exp

(
−kx2

(1− e−2kt)σ2

)
, φ(t) =

√
k

πσ2(1− e−2kt)

(46)
It is also possible, to obtain the exact solution from the SDE directly: Start-
ing again at

dXt + kXtdt = σdWt, X0 = a

we see that we can use an integrating factor to write

d
(

ektXt

)
= σekt dWt (47)

with the obvious solution

Xt = ae−kt +

∫ t

0
e−k(t−s)dWs . (48)

From here we see that Xt is a superposition of Gaussian variables, hence
Gaussian itself and we only need to find the mean and the variance of Xt in
order to completely characterize its dynamics. The mean is trivial:

E(Xt) = µt = ae−kt (49)

and, for the variance, we need to compute

V (Xt) = E((Xt − µt)(Xt − µt)) . (50)

For this calculation, we can use the explicit solution given in (48). In addi-
tion we note that E(dWsdWs̃) = 0 if s 6= s̃ and E(dWsdWs̃) = ds if s = s̃:

V (Xt) = E
(∫ t

0

∫ t

0
e−k(t−s)e−k(t−s̃)dWsdWs̃

)
=

∫ t

0
e−2k(t−s)ds =

1− e−2kt

2k

16

which is exactly the same result as in the path integral calculation.
With a little more work, we can also work with the Fokker-Planck equa-

tion and use Fourier transform. Although this calculation seems to confirm
only the previous results, it is nevertheless useful in order to learn how to
apply Fourier transform in a slightly more complicated setting. The Fokker-
Planck equation for the Ornstein-Uhlenbeck process reads

pt = ∂x(kxp) +
σ2

2
pxx, p(t = 0, x) = δ(x− a) . (51)

Let’s consider again the particular case of a = 0. In order to solve this
Fokker-Planck equation in Fourier domain, we need to transform the term
∂x(xp). Integration by parts yields

1√
2π

∫
e−iωx∂x(xp)dx = iω

1√
2π

∫
e−iωxxp dx

= iω
1√
2π

−1

i
∂ω

∫
e−iωxp dx = −ω∂ωp̂

Therefore, we obtain the following partial differential equation for p̂

p̂t + kω∂ωp̂ = −σ
2

2
ω2p̂, p̂(t = 0, ω) =

1√
2π

. (52)

Since this is a first-order partial differential equation, we can use the method
of characteristics to find the solution. The characteristic curves ω = ω(t)
are defined by considering

d

dt
p̂(t, ω(t)) = p̂t + ω̇∂ωp = p̂t + kω∂ωp̂ (53)

and setting ω̇ = kω. The solutions are given by ω(t) = ektω(0) or ω(0) =
e−ktω(t). Along these curves, we have

d

dt
p̂(t, ω(t)) =

dp̂

dt
= −σ

2

2
ω(t)2p̂ = −σ

2

2
e2ktω(0)2p̂ (54)

This is a simple ordinary differential equation with the solution

p̂(t, ω(t)) = p̂(t = 0, ω) exp

(
−σ

2

2

∫ t

0
e2ktω(0)2dt̃

)
p̂(t = 0, ω)

= exp

(
−σ

2

2
ω(0)2

e2kt − 1

2k

)
p̂(t = 0, ω)

= exp

(
−σ

2

2
ω(t)2

1− e−2kt

2k

)
p̂(t = 0, ω)

17

Putting all solutions on the characteristic curves together, we have therefore

p̂(t, ω) = exp

(
−σ

2

2
ω2 1− e−2kt

2k

)
p̂(t = 0, ω) (55)

and the inverse Fourier transform yields the same result as the path integral
and the solution of the SDE.

Monte-Carlo simulations revisited: Importance Sampling

In the following we are discussing an example of how the path integral
approach can be useful to speed up the convergence of Monte-Carlo simula-
tions. For simplicity, in this section, we will consider the case of an interest
rate that is zero (r = 0). Then, using the risk-free measure Q and the
Q-Brownian motion Wt, the stock process is written as

St = S0 eσWt−σ2t/2 .

Consider now the problem of pricing a European option that is far out of
the money, so for instance K � S0 (with T and σ taking reasonable values).
Clearly, the option price

V = EQ((ST −K)+)

will be small, and we can compute its value exactly using the Black-Scholes
formula. If we are trying to use Monte-Carlo simulations, let’s say an en-
semble of N paths, and to estimate V using the mean as described before,
namely

V̂ =
1

N

∑
i

(S(i) −K)+

we encounter the problem that, for most of the sample paths, we will obtain

(S
(i)
T −K)+ = 0 and we expect to need a large number of paths in order to

arrive at a decent approximation of V . What if we, in order to speed up the
simulations, introduce artificially a drift γt via

Wt = W̃t + γt (56)

in order to bias the noise in a way that makes the rare event (S
(i)
T −K)+ > 0

more likely. Note, that we could also try to introduce a more complicated
drift γ(t) in dWt = dW̃ + γ(t)dt. Intuitively, we would like to consider
sample paths that are close to the minimizer φ of the Lagrangian discussed
in the previous section for our SDE under consideration, with the boundary

18

conditions φ(0) = S0 and φ(T) = K. How can we find this minimizer? The
corresponding SDE for St is written as

dSt = σStdWt (57)

and we need to minimize the functional∫ T

0

1

2σ2
φ̇2

φ2
dt, φ(0) = S0, φ(T) = K

It is easy to see that the solutions of the Euler-Lagrange equations are
exponentials of the form

φ(t) = S0 eαt (58)

and the boundary conditions yield α = ln(K/S0)/(σT). Therefore, a good
first choice as an artificial drift γ is to set

γ = α =
1

σT
ln

(
K

S0

)
. (59)

The corresponding new SDE is then simply

dSt = σStdWt + γStdt . (60)

How do we now compensate for this drift when estimation the value V
of the option? All we did was adding a drift, corresponding to a change
of measure. Therefore, we can use the Cameron-Martin-Girsanov theorem
and the likelihood ratio provided by the Radon-Nikodym derivative in the
theorem in order to compensate for the drift:

EQ(X) = EQ̃

(
dQ
dQ̃

X

)
,

dQ
dQ̃

= e−γW̃t−γ2t/2 (61)

The following code implements this idea: While solving the SDE, we keep
track of the corresponding realization of the Brownian motion for each path
such that we can use this information at the end to use the Radon-Nikodym
derivative as a factor when we compute the mean over all sample paths.

19

function [v,vAna] = euroOptionIS(N,gam)

% Set parameters

Sini = 42;

K = 80;

sig = 0.2;

T = 0.5;

nSteps = 1000;

dt = T/nSteps;

S = Sini*ones(N,1);

W = zeros(N,1); % keep track of Brownian motion

for k=1:nSteps

r = randn(N,1);

S = S + S*sig*sqrt(dt).*r+sig*gam*S*dt; % with IS drift

W = W + sqrt(dt)*r;

end

% compute expectation with Girsanov factor

v = sum(exp(-0.5*gam^2*T)*exp(-gam*W).*max(S-K,0))/N;

d1 = (log(Sini/K)+sig^2/2*T)/(sig*sqrt(T));

d2 = (log(Sini/K)-sig^2/2*T)/(sig*sqrt(T));

vAna = Sini*normcdf(d1) - K*normcdf(d2);

end

function v = normcdf(x)

v=0.5*erfc(-x/sqrt(2));

end

20

Exercises

1. (10 points) Give a proof of the Box-Muller algorithm.

2. (10 points) Assume that, for a probability density p, the cumulative
distribution function F defined by

F (x) =

∫ x

−∞
p(x̃) dx̃

is invertible and its inverse function is F−1. Then, we can generate
random numbers with a density p by doing the following:

(a) Draw random number r, uniformly distributed in [0, 1].

(b) Compute z = F−1(r).

Prove that this statement is true. Then formulate an algorithm to
generate random numbers with a Weibull distribution with the pa-
rameters λ > 0 and k > 0 given by

p(x) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

for 0 ≤ x.

3. (10 points) Prove the Chebyshev inequality: For ε > 0 and µ = E(X),
we have

P (|X − µ|) ≥ ε) ≤ Var(X)

ε2
.

Use this equation to show that we expect Monte-Carlo simulations to
converge with ∼ 1/

√
N .

4. (10 points) Show that, for

P ((χ1, ..., χN)) =
1

(2π)N/2
1√
|A|

exp

−1

2

N∑
n,m=1

χnA
−1
nmχm

 , (62)

we have indeed E(χnχm) = Anm.

5. (10 points) Carry out the path integral calculations for the Ornstein-
Uhlenbeck process.

21

