
Lecture 2: Stochastic differential equations

(a) Review of probability theory

Discrete probability distributions

Basic setup of a random experiment:

1. Sample space: Ω, consists of all elementary outcomes.

2. Set of all events G, which consists of all subsets of Ω.

3. Probability measure: P : G → [0, 1] which assigns a probability to
each event.

Axioms of Probability:

1. P (A) ≥ 0 for all A ∈ G, P (Ω) = 1.

2. If A and B are disjoint events, then P (A ∪B) = P (A) + P (B).

Important properties:

P (Ā) = P (Ω−A) = 1− P (A), (1)

P (∅) = 0, (2)

P (A ∪B) = P (A) + P (B)− P (A ∩B) . (3)

Examples:

1. Roll a dice once. Here, Ω = {1, 2, 3, 4, 5, 6}. Each elementary outcome
is equally likely, hence P ({1}) = 1/6, P ({2}) = 1/6, etc. We can use
this to compute the probabilities of events that are not elementary:

P ({1, 3, 5}) = P ({1}) + P ({3}) + P ({5}) =
1

2
.

2. Roll two dice once. We can represent the sample space in the following
form:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Clearly, we have 62 = 36 possible outcomes which are equally likely.
Hence the probability of each elementary outcome is 1/36.
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Random variables: A random variable X is a real-valued function on the
sample space Ω. If the range of X is finite or countable, X is called discrete,
otherwise X is called continuous.
For a discrete random variable X with the range {x1, x2, ..., xn}, the ex-
pectation E(X) of X (often denoted as µX), the variance Var(X), and the
standard deviation σX are defined as follows:

µX ≡ E(X) =
n∑
k=1

xk pk , (4)

Var(X) = E
(
(X − µX)2

)
=

n∑
k=1

(xk − µX)2 pk , (5)

σX =
√

Var(X) . (6)

Here, pk = P (X = xk) is the probability that the random variable takes
the value xk. In order to compute this probability, we need to find the set
A ∈ G that is mapped by X onto xk, or

pk = P (X = xk) = P (A), A = X−1(xk) . (7)

Note, that as P (Ω) = 1, we have obviously

n∑
k=1

pk = 1 . (8)

From the definition of the expectation and the variance, we find directly
that, for constants a and b we have

E(aX + b) = aE(X) + b, Var(aX + b) = a2Var(X) . (9)

The proof is left as an exercise. Note that the variance is a quadratic quan-
tity, therefore its scaling factor a2 and not a. Moreover, the variance is
insensitive to shifts, hence b does not enter on the right-hand side of the
second equation.
For the variance, we have the following alternative formula:

Var(X) = E(X2)− µ2. (10)

Proof: We can see this by direct calculation. Set µ = E(X). Then

Var(X) = E
(
X2 − 2µX + µ2

)
= E

(
X2
)
− 2µE(X) + E(µ2)

= E
(
X2
)
− 2µ2 + µ2

= E(X2)− µ2.

2



Examples:

1. Consider again the random experiment of rolling a die once. If we
define the random variable X as the number of points of the die,
we have xk = k for k = 1, 2, ..., 6. Each pk = 1/6 and we find the
µX = 7/2. Calculation:

µX =

n∑
k=1

xkpk =
1

6
(1 + 2 + ...+ 6) =

7

2

2. Consider now a second random experiment of rolling two dice once. If
we define the random variable X as the sum of the points, the range of
X consists of the number from 2 to 12. Now it is (slightly) harder to
find the corresponding pk, but if we rewrite the matrix of elementary
outcomes again (look at the ascending diagonals)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

we find easily

P (X = 2) = P ((1, 1)) =
1

36
,

P (X = 3) = P ((2, 1)) + P ((1, 2)) =
2

36
.

Probability distributions: From the above examples, it is clear that the func-
tion xk → pk captures the essence of the random experiment. In the first
case, we have pk = 1/6 for all xk, hence the distribution is uniform, its graph
is flat (see Figure 1).

In the second case, pk increases with k until it reaches its maximum at
xk = 7 and then it decreases. Here, the graph is a triangle, see Figure 2.
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Figure 1: Probability distribution for one die.
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Figure 2: Probability distribution for two dice.

Binomial distribution: Consider a random experiment that consists of n
independent trials such that

1. each trial has only two outcomes S (success) or F (failure).

2. the probabilities for success p = P (S) and q = P (F) = 1 − p are the
same for all trials.

3. the random variable X counts the number of successes in the n trials

Consider, for example n = 2, and p = q = 1/2. The possible outcomes of
the experiment are {SS, SF, FS, FF}. The range of X is {0, 1, 2} and we
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find the following probability distribution:

P (X = 0) = P (FF ) =
1

4
,

P (X = 1) = P (FS) + P (SF ) =
1

2
,

P (X = 2) = P (SS) =
1

4
.

We can represent this experiment in a tree diagram:

SS

S

Start SF, FS

F

FF

p

q

p

q

p

q

In the general case, the range of X is {0, 1, 2, ..., n}. The probability of
obtaining k successes during the n trials, can be computed as

P (X = k) =

(
n

k

)
pkqn−k . (11)

Here,
(
n
k

)
is the binomial coefficient, sometimes written as nCk. Hence the

binomial distribution is characterized by the two parameters n and p and
we write X ∼ B(n, p).

Proof: Consider the probability of the particular event A that represents
the sequence of obtaining first k successes followed by n− k failures:

A = S...S︸ ︷︷ ︸
k

F...F︸ ︷︷ ︸
n−k

.

Since the probabilities on the branches of the tree multiply due to indepen-
dence, the probability of this sequence is given by

P ({S...SF...F}) = pk qn−k .

Since the random variable X only counts the number of successes, the order
in which the successes appear in the sequence is irrelevant: All events with
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exactly k successes contribute to the total probability P (X = k) and there
are exactly

(
n
k

)
such events.

We will later need formulas for the expectation (mean) of X and its variance.
For the binomial distribution we have

E(X) = np, σ2
X = npq . (12)

Proof: First remember that, for the sum of two random variables X1 and
X2 we have

E(X1 +X2) = E(X1) + E(X2) , (13)

hence for a sum of n random variables we have

E

(
n∑
k=1

Xk

)
=

n∑
k=1

E(Xk) . (14)

We can represent the binomial random variable X as a sum of Bernoulli
random variables

X =
n∑
k=1

Xk ,

where each Xk takes the value 1 in case of success, otherwise the value 0.
Clearly, the expected value of Xk is

E(Xk) = p · 1 + q · 0 = p

and, therefore, we have E(X) = np. In order to prove the statement about
the variance, remember that, for independent random variables, the vari-
ances add up:

Var

(
n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk) . (15)

The variance of each Xk can be computed directly:

Var(Xk) = E(X2
k)− µ2

k = p− p2 = p(1− p) = pq ,

which yields Var(X) = npq.
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Continuous probability distributions

In the following we consider a continuous random variable X with a prob-
ability density function p(x) on R. One way to think of the probability
density function is that the probability that X takes a value in the interval
[x, x+ dx) is given by

P (x ≤ X < x+ dx) = p(x) dx .

For continuous probability distributions, the sums in the formulas above
become integrals. For instance we have

1 =

∫
R
p(x) dx , (16)

µX = E(X) =

∫
R
x p(x) dx , (17)

σ2
X = Var(X) =

∫
R

(x− µX)2 p(x) dx . (18)

We also define the cumulative distribution given by FX(x) = P (X < x) that
can be written as

FX(x) = P (X < x) =

∫ x

−∞
p(t) dt . (19)

Normal distribution: If the random variable X has the probability density
p given by

p(x) =
1√
2πσ

e−(x−µ)2/(2σ2) (20)

we say that X has a normal distribution with mean µ and standard deviation
σ, or X ∼ N(µ, σ2).

We can show by direct calculation that indeed

1 =

∫
R
p(x) dx , (21)

µ = E(X) =

∫
R
x p(x) dx , (22)

σ2 = Var(X) =

∫
R

(x− µ)2 p(x) dx . (23)

For the proof, we need the following basic calculus result:

J =

∫
R

e−ax
2
dx =

√
π

a
(24)
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Figure 3: Standard normal distribution with µ = 1, σ = 1.

Proof of this result: Consider a = 1 and instead of J the square J2. Then
transform to polar coordinates:

J2 =

(∫
R

e−x
2
dx

)(∫
R

e−y
2
dy

)
=

∫
R2

e−(x2+y2) dx dy =

∫ ∞
0

∫ 2π

0
e−r

2
r dφ dr

= π

∫ ∞
0

2r e−r
2
dr = π .

We can now proceed to prove the equations (21), (22), (23). First, we see
immediately that∫

R
p(x) dx =

1√
2πσ

∫
R

e−(x−µ)2/(2σ2) dx =
1√
2πσ

√
2σ2π = 1 .

In order to show (22), we first write∫
R
x p(x) dx =

∫
R

(x− µ+ µ) p(x) dx

= µ+
1√
2πσ

∫
R

(x− µ) e−(x−µ)2/(2σ2) dx .

Due to symmetry (substitute x̃ = x− µ) the last integral is zero:∫
R

(x− µ) e−(x−µ)2/(2σ2) dx =

∫
R
x̃ e−x̃

2/(2σ2) dx̃ = 0 .
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For the last property (23), we need one more integral:∫
R
x2 e−ax

2
dx =

1

2a

√
π

a
. (25)

This result also follows directly from what we already know: Use the basic
integral (24) to define a function J(a) as

J(a) =

∫
R

e−ax
2
dx =

√
π

a

and compute J ′(a) in two different ways. First, differentiate under the
integral and then use the right-hand side of the above equation

J ′(a) = −
∫
R
x2 e−ax

2
dx =

d

da

(√
π

a

)
= − 1

2a

√
π

a
.

Now we can find (23) by direct computation:∫
R

(x− µ)2 p(x) dx =
1√
2πσ

∫
R

(x− µ)2 e−(x−µ)2/(2σ2) dx

=
1√
2πσ

∫
R
x̃2 e−x̃

2/(2σ2) dx̃

=
1√
2πσ

2σ2

2

√
2σ2π = σ2

Central limit theorem: The mean of a sufficiently large number of iterates of
independent random variables, with a well-defined expected value and a well-
defined variance, will be approximately normally distributed. In particular,
for large n, the binomial distribution B(n, p) becomes approximately normal
with N(np, npq).
Moment-generating function: For a random variable X, the moment-genera-
ting function MX is defined as

MX(s) = E
(
esX
)
. (26)

Clearly, we have MX(0) = 1. More interestingly, we find that, if we know
MX , we can compute the mean (and in fact all higher moments) of the
random variable X by differentiation. For the mean, this relationship is
given by

µX = E(X) = M ′X(0) . (27)
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Proof: From the definition of the moment-generating function, we can use
the density p of X to write

M ′X(s) =

∫
R
xesxp(x) dx

If we evaluate this relationship at s = 0 we find immediately

M ′X(0) =

∫
R
xp(x) dx = E(X)

As an example of how to compute the moment-generating function in a
concrete case, take a random variable Z ∼ N(0, 1). We find by direct
calculation:

MZ(s) =
1√
2π

∫
R

esx−x
2/2 dx

=
1√
2π

∫
R

e−
1
2

(x2−2xs) dx

=
1√
2π

∫
R

e−
1
2

(x2−2xs+s2−s2) dx

= es
2/2 1√

2π

∫
R

e−
1
2

(x−s)2 dx = es
2/2

The trick of ’completing the square’ used in the third line of the above
calculation is very useful in the context of Gaussian integrals.

Simulating random numbers

In MATLAB, we can generate normally distributed random numbers (e.g.
with a standard normal distribution) Z ∼ N(0, 1) using the command
randn(). For instance, the command r=randn(1,1000) creates a row vec-
tor of 1000 random numbers. In order to create histograms, one can use
the command hist(). The following series of commands compares the his-
togram of the randomly generated numbers with the theoretical distribution.

>> [x,ps] = creategauss(10000);

>> plot(x,ps,x,1/sqrt(2*pi)*exp(-x.^2/2))

Here, the function creategauss() creates an approximation of the theoret-
ical probability density by a sample of random numbers:
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Figure 4: Standard normal distribution from 10000 samples.

function [x,ps] = creategauss(n)

% creategauss.m Sampling of a standard normal distribution

% [x,ps] = creategauss(n);

% plot(x,ps,x, 1/sqrt(2*pi)*exp(-x.^2/2))

x = [-10:0.1:10]; % create x range

dx = x(2)-x(1); % here 0.1, of course

r = randn(1,n); % draw n random numbers

ps = hist(r,x); % create histogram, centers given by x

ps = ps/sum(ps)*1/dx; % normalize

end
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(b) Brownian motion and stochastic differential equations (SDEs)

Random Walks and Brownian Motion

Simple random walk: In the following, we develop a more systematic ap-
proach to formulate a continuum limit for stochastic processes. For this
purpose, imagine that we devide the interval [0, 1] into n steps and define a
random walk Wn at time steps t0 = 0, t1 = δt, t2 = 2δt, ... with δt = 1/n as
the process that

• starts at zero, hence Wn(0) = 0,

• can go up or down by 1/
√
n with a probability of 1/2 at each step

3/
√
n

2/
√
n

1/
√
n 1/

√
n

0 0

−1/
√
n −1/

√
n

−2/
√
n

−3/
√
n

Figure 5: Simple random walk

The scaling of the ’up-’ and ’down-’ jumps of 1/
√
n is essential for the

convergence of the process as we will see by the following argument: The
random walk Wn can be written as a sum of independent random variables
Xj , where each Xj takes the value -1 or 1 with probability 1/2, hence

Wn(kδt) =
1√
n

k∑
j=1

Xj (28)
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Clearly, the mean of Wn is zero. The variance at k = n is computed as the
sum of the variances of the Xj as all Xj are independent. Therefore, we find

Var(Wn(1)) =

n∑
j=1

(
1√
n

)2

Var(Xj) = n · 1/n = 1 (29)

Now we see that, due to the factor 1/
√
n, the variance of Wn(1) = 1 for

all n, hence we can expect convergence of Wn → Z with Z ∼ N(0, 1) by
applying the central limit theorem. Often, we also write

Wn((k + 1)δt) = Wn(kδt) + ∆W, ∆W = ± 1√
n

= ±
√
δt (30)

where ∆W is called the Brownian increment which can take the values
√
δt

and −
√
δt with probability 1/2.

Brownian motion: We can now take the continuum limit to see that the
random walk Wn converges to a continuous stochastic process W called
Brownian motion (with respect to the measure P. From the properties of
Wn we can see that

• W0 = 0

• Wt ∼ N(0, t)

• Wt −Ws ∼ N(0, t− s)

Moreover, due to the independence of the increments Xj , we know that all
Brownian increments are independent, in particular Wt−Ws is independent
of the history up to the time s.

Stochastic Differential Equations

Consider the process defined by Xt = σtWt. In a discrete approximation,
we can compute the next value Xt+∆t by drawing a random number r which
is 1 or −1 with probability 1/2 and setting

Xt+∆t = Xt + σt r
√

∆t .

A different way of writing this relationship is to consider the differential by
writing

∆Xt = Xt+∆t −Xt = σt r
√

∆t = σt ∆W
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with the Brownian increment ∆W . The continuous version of the above
equation is simply

dXt = σtdWt (31)

and, in this form, the stochastic equation resembles a differential equation.
A (short) review of differential equations: Let’s, for a moment, put stochas-
ticity aside and consider a basic, deterministic differential equation of the
form

dBt
dt

= µt

Writing this in a discretized version, we can write

∆Bt = Bt+∆t −Bt = µt ∆t

The continuous version of the above equation is simply

dBt = µtdt

which is very similar to (31). However, the main difference is that ∆t is
deterministic, whereas ∆W is stochastic. Moreover, the size of ∆W is much
larger that ∆t as |∆W | =

√
∆t.

General form of a stochastic differential equation: It is convenient to com-
bine stochastic and deterministic contributions to the change of the stochas-
tic process Xt in differential form by writing

dXt = µtdt+ σtdWt (32)

Note that, as for ordinary differential equations the function µt and σt can
depend on Xt and on t, hence

µt = µ(Xt, t), σt = σ(Xt, t) .

As for deterministic differential equations, there are no general techniques
to solve any given stochastic differential equation. Many simple problems,
however, can be solved by applying Ito’s Lemma which we will discuss in
the next section.
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(c) Ito’s lemma, Girsanov theorem, and martingales

Martingales

We will now analyze the mathematical structure behind the option pricing.
First, we need several basic definitions, then we will see how they can be
applied in a financial context.
Stochastic Process: A stochastic process Y is a collection of random vari-
ables, usually we write Y = (Y0, Y1, Y2, ...). We interpret the index as the
number of the time-tick, and, at the moment, we only consider discrete
stochastic processes. Usually, we assume that the value of Y0 is known, and
the other Yi for i > 0 are random variables with several possible values. An
example is the stock process S given by the above tree. Here, for example,
S0 = 100 and S2 can take the values {60, 100, 140}.
Filtration: A filtration Fi is a history in time up to the time i. In the case of
the stock process, a particular path in the tree corresponds to such a history.
There are different ways to identify the history, for example by listing the
corresponding nodes or stock values. Alternatively, we can also say, for
instance, that we are looking at the filtration F2 = (u, u) where ’u’ stands for
an up-movement of the stock process. We could also say F2 = (100, 120, 140)
meaning that F2 is the path of the stock where S0 = 100, S1 = 120, and
S2 = 140.
Conditional expectation: Given a filtration Fi up to the time i, we can
compute expectations with respect to the remaining part of the tree, taking
into account the nodes that are still accessible given the history Fi. For the
above history (u, u), the stock will be at the node with the value 140. Now
only the two remaining values 120 and 160 are accessible. Therefore, we can
compute the expectation of S3 conditioned on the history F2 = (u, u). We
write EQ(S3|F2 = (u, u)). In our case, we see that

EQ(S3|F2 = (u, u)) =
1

2
· 160 +

1

2
· 120 = 140.

Martingales: It is easy to check that, for the above example, we have

EQ(S3|F2) = S2

for any history F2. Or, even more general EQ(Sj |Fi) = Si for j ≥ i. This
property is called the martingale property and a stochastic process Y with
the property

EQ(Yj |Fi) = Yi (33)
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for j ≥ i is called a Q-martingale. Why is the stock process considered above
a Q-martingale? The answer is extraordinarily simple: We constructed the
measure Q such that S has exactly this martingale property! Remember
that we used the formula

q =
snow − sd
su − sd

, snow = qsu + (1− q)sd .

The latter equation ensures that

Sk = EQ(Sk+1|Fk)

such that the martingale property holds at each node of the tree. It is then
easy to see, e.g. by induction, that the martingale property holds for the
entire tree.
The claim: Let’s now consider the claim X, for example the European call
X = (S3−K)+. Here things are slightly more complicated as X is, at first,
only defined on the end nodes of the tree. When filling the option tree,
working backwards, we constructed a new stochastic process Y , such that
Y3 = X at the end nodes. At each step, we computed

fnow = qfu + (1− q)fd .

In other words, we used in fact the conditional expectation operator in order
to construct Y , hence

Yi = EQ(X|Fi) (34)

For instance, for the filtration F2 = (u, u), we have

fnow = EQ
(
(S3 −K)+|F2 = (u, u)

)
=

1

2
· 60 +

1

2
· 20 = 40 .

In this way, Y is again a martingale, more precisely a Q-martingale as we
used the measure Q in the conditional expectation operator that defines Y .

Binomial Representation Theorem

Construction strategies: So far, the mathematical view of option pricing
consists in the following steps (remember, for now, we assume that the
interest rate r = 0):

1. For the given stock process S, construct a measure Q, such that S is
a Q-martingale.
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2. Convert a claim X, that is defined at the end nodes of the tree, into
a stochastic process Y defined on the same tree as S using the condi-
tional expectation operator

Yi = EQ(X|Fi).

3. The option price is Y0 = EQ(X|F0) = EQ(X).

The final step is to clarify what the replication strategy (the stock and bond
holdings in order to hedge the claim) means in mathematical terms. The
appropriate interpretation is the following: We have two Q-martingales on
the same tree, and, in such a situation, it can be shown that one martingale
can be constructed from the other martingale in a previsible way, meaning
that we always know one step ahead which φ to choose (which is important
for our hedging strategy). To formulate this more precisely, we prove the
following theorem:

Theorem. (Binomial Representation Theorem) Assume that S is a Q-
martingale and V is another Q-martingale on the same tree. Then there
exists a previsible process φ such that

Vn = V0 +

n−1∑
j=0

φj+1(Sj+1 − Sj) (35)

Proof. Consider a step from i to i+ 1 where Si = snow can go to Si+1 = su
or Si+1 = sd and Vi = fnow can go to Vi+1 = fu or Vi+1 = fd. Clearly, we
can find φi+1 and ki+1 such that

fu − fnow = φi+1(su − snow) + ki+1

fd − fnow = φi+1(sd − snow) + ki+1

In particular we know at time i the value of φi+1 to be

φi+1 =
fu − fd
su − sd

To prove the formula

Vi+1 − Vi = φi+1(Si+1 − Si) ,

we need to show that ki+1 = 0 and to do so, we will make use of the
assumptions that the processes S and V are Q-martingales: Since ki+1 is
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known at time i we have

ki+1 = EQ(ki+1|Fi)
= EQ(Vi+1 − Vi|Fi)− φi+1EQ(Si+1 − Si|Fi)
= 0 .

The theorem then follows by induction.

Replication with non-zero interest rates: For the case r 6= 0, it can be shown
that we need to make only minor modifications to the above application
of the binomial representation theorem: Define a process Z given by Zi =
B−1
i Si (the discounted stock process), and choose the measure Q such that Z

is a Q-martingale. Then define a process E using the conditional expectation
operator

Ei = EQ
(
B−1
T X|Fi

)
(36)

and apply the binomial representation theorem such that

En = E0 +
n−1∑
j=0

φj+1(Zj+1 − Zj) (37)

Brownian Motion as a Martingale

In continuous time, we define a martingale in analogy to the discrete defi-
nition: A stochastic process Mt is a martingale with respect to a measure P
(or short P-martingale) if for all t > s

EP(Mt|Fs) = Ms (38)

It is easy to see that a P-Brownian motion is a P-martingale. Intuitively, this
is clear as the random walk Wn goes up and down with the same probability.
Using the above properties of Brownian motion, we can easily carry out a
formal proof (assuming t > s):

EP(Wt|Fs) = EP(Wt −Ws +Ws|Fs)
= EP(Wt −Ws|Fs) + EP(Ws|Fs)
= 0 +Ws = Ws

In the last step, we used the (trivial) fact that EP(Ws|Fs) = Ws and that
EP(Wt − Ws|Fs) = 0 since we know that Wt − Ws ∼ N(0, t − s). We
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can also use the properties of Brownian motion in order to carry out more
complicated calculations. Consider for example the stochastic process

Yt = W 2
t − t

and we can show that Yt is also a P-martingale in the following way: First
we show that

EP(W 2
t −W 2

s |Fs) = t− s (39)

Proof: By direct computation we have

EP(W 2
t −W 2

s |Fs) = EP((Wt −Ws)
2 + 2Ws(Wt −Ws)|Fs)

= EP((Wt −Ws)
2|Fs) + 2WsEP((Wt −Ws)|Fs)

= t− s .

Again, the last line follows directly from the fact that Wt−Ws ∼ N(0, t−s).
With the above relation (39) at hand, we find for the process Yt:

EP(W 2
t − t|Fs) = EP(W 2

t −W 2
s +W 2

s − t|Fs)
= t− s+W 2

s − t = W 2
s − s

which shows that Yt = W 2
t − t is indeed a martingale. This calculation,

however, shows as well that it will be useful to find more sophisticated tests
to see whether a process in continuous time is a martingale. We will see
that the so-called Ito’s Lemma (see below) offers for many processes a quick
way to test whether they satisfy the martingale property.

Ito’s Lemma

Taylor expansion of the differential: Consider a stochastic differential equa-
tion in its general form

dXt = µtdt+ σtdWt

and consider a transformation of the form

Yt = f(Xt)

with a smooth function f . We can calculate the differential equation for Yt
by considering the following Taylor expansion:

∆Y = f(Xt + ∆X)− f(Xt) = f ′(Xt)∆X +
1

2
f ′′(Xt)(∆X)2 + ...

= f ′(Xt)(µt∆t+ σt∆W ) +
1

2
f ′′(Xt)(µt∆t+ σt∆W )2 + ...

≈ f ′(Xt)(µt∆t+ σ∆W ) +
1

2
f ′′(Xt)σ

2
t (∆t)
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The last approximation follows as (∆W )2 = ∆t and from the fact that we
consider terms up to the order ∆t. Remember that |∆W | =

√
∆t. Terms

like (∆W )∆t are of the order (∆t)3/2 and can be neglected. Therefore, we
have the following

Lemma. (Ito’s Lemma) Assume that a stochastic process Xt is the solution
of the stochastic differential equation

dXt = µtdt+ σtdWt .

Then, for a transformed process Yt = f(Xt) with a deterministic, twice
continuously differentiable function f , the process Yt satisfies the stochastic
differential equation given by

dYt = f ′(Xt) (µtdt+ σtdWt) +
1

2
σ2
t f
′′(Xt)dt

= f ′(Xt)σtdWt +

(
f ′(Xt)µt +

1

2
σ2
t f
′′(Xt)

)
dt .

Examples of the application of Ito’s lemma: We can consider Ito’s lemma as
a generalization of the deterministic chain rule. In the following we discuss
several examples and applications of Ito’s lemma.

• Consider the special case, where Xt = Wt and Yt = f(Wt). Then we
have µt = 0 and σt = 1 and we see that

dYt = f ′(Wt)dWt +
1

2
f ′′(Wt)dt .

• Applying the above formula, we find directly relationships like

d(W 2
t ) = 2WtdWt + dt

d(W 2
t − t) = 2WtdWt

d(W 3
t ) = 3W 2

t dWt + 3Wtdt

d(W 6
t ) = 6W 5

t dWt + 15W 4
t dt

In particular we see that the solution of the stochastic differential
equation dYt = 2WtdWt (together with the initial condition Y0 = 0) is
given by Yt = W 2

t − t.

• An important example is the application to f(x) = ex. Then, clearly,
f(x) = f ′(x) = f ′′(x). Let’s assume constant volatility σt = σ and
constant drift µt = µ and define

Yt = f(Xt) = eXt = eσWt+µt .
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This process is called exponential Brownian motion and is of relevance
in the context of the Black-Scholes model. Applying Ito’s lemma, we
find that

dYt = f ′(Xt)dXt +
1

2
σ2f ′′(Xt)dt

= Yt

(
σdWt +

(
µ+

1

2
σ2

)
dt

)
.

In particular we see that for µ = −σ2/2, hence for

Yt = eσWt−σ2t/2

we have
dYt = σYtdWt

• For two processes Xt and Yt satisfying the stochastic differential equa-
tions

dXt = µtdt+ σtdWt

dYt = νtdt+ ρtdWt

we have for the product Zt = XtYt

d(XtYt) = XtdYt + YtdXt + σtρtdt .

This generalizes the product rule to stochastic processes. The proof is
left as an exercise. Hint: use a two-dimensional Taylor expansion of
the function f(x, y) = xy.

Using Ito’s lemma to identify martingales: Aside from solving stochastic
differential equations, we can also use Ito’s lemma to identify martingales.
To see why, let’s prove first the following (trivial) statement: Consider a
stochastic process Xt given by

Xt = σWt + µt

with constant volatility σ and constant drift µ. Then Xt is a martingale if,
and only if, the drift vanishes or µ = 0. The proof is basically a repetition of
the proof that Brownian motion is a martingale: Assume Xt is a martingale,
then we have (for any t > s)

EP(Xt|Fs) = Xs .
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As Xs = σWs + µs, and using the fact that Wt is a P-martingale, we see
that

EP(Xt|Fs) = σEP(Wt|Fs) + µt = σWs + µt = Xs = σWs + µs

or µt = µs, hence µ = 0. The other direction is trivial. The important
interpretation of this statement is that, for arithmetic Brownian motion
σWt + µt, we need the drift to vanish in order for the process to be a
martingale. This statement is generalized by the following theorem:

Theorem. (Characterization of martingales) Assume that a stochastic pro-
cess Xt is the solution of the stochastic differential equation

dXt = µtdt+ σtdWt .

and that the (technical) condition E((
∫ T

0 σ2
sds)

1/2) < ∞ is satisfied. Then
Xt is a martingale if, and only if, Xt is driftless (hence µt = 0).

We will not give a formal proof of this theorem, but taking our intuition from
the discrete world, we know that a process on a finite tree is a martingale
if the process is a martingale on each branch. Therefore, for a time-tick ∆t,
we can consider

Xt+∆t = Xt + ∆X =

{
µt∆t+ σt

√
∆t

µt∆t− σt
√

∆t

where the probability for an ’up’-jump and an ’down’-jump are 1/2. There-
fore, we have

EP(Xt+∆t|Ft) = Xt + µt∆t = Xt

if Xt is a P-martingale. Hence µt = 0 for that time-tick. This local feature
of one ’branch’ translates to the entire tree, hence µt = 0 everywhere.

Going back to one of the examples for Ito’s lemma discussed earlier, we
can now see immediately that the stochastic process Yt = W 2

t − t is a mar-
tingale as there is no drift present in dYt = 2WtdWt. On the other hand,
Yt = W 2

t is not a martingale since the stochastic differential equation is
dYt = 2WtdWt + dt with the drift term dt present. We actually already
obtained this result above directly from the properties of Brownian motion.
The calculation, however, was more tedious than a simple and direct appli-
cation of the above theorem in conjunction with Ito’s lemma.

In the context of stock models, referring to the exponential Brownian
motion we see that

Yt = Y0eσWt−σ2t/2
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is a martingale as there is no drift term in the corresponding stochastic
differential equation

dYt = σYtdWt .

This already resembles the representation of the stock process in the mar-
tingale measure that we obtained earlier for the Black-Scholes model. The
precise meaning will become clear in the next section when we discuss the
change of measure and the Girsanov theorem.

The Girsanov Theorem

Radon-Nikodym derivative: Taking again our intuition from the discrete
world, we know that, in the context of option pricing, we need to price the
claim using the risk-neutral measure. If there are no interest rates, this
measure Q is constructed through the requirement that the stock process
St needs to be a Q-martingale. This will also work in the continuous world,
however, we will need a continuous model of the stock process in the first
place. For the Black-Scholes model, we start from

St = S0eσWt+µt

with a P-Brownian motion Wt. In order to define a measure Q, such that St
becomes a Q-martingale, we need to know how a Brownian motion changes
when the measure changes. Or, in other words, we would like to express the
change of measure in terms of Brownian motions.

To prepare the change of measure in the continuous world, we go back
(only for a moment) to the discrete world. Consider the same tree with two
different measures P and Q.

In the following, we basically only need the rule that we have to multiply
probabilities on branches in order to compute the probability to get to a
certain node. For instance, using the measure P, the probability π9 to get
to the node numbered node 9 is

π10 = p1 · p3 · p6

Under the measure Q, the probability to reach node 9 is in general different.
Let’s denote it by π̃9. Obviously, we have

π̃10 = q1 · q3 · q6

In this way, we can express probabilities for all nodes. For node 9, we find

π9 = p1 · p3 · (1− p6) + p1 · (1− p3) · p5 + (1− p1) · p2 · p5,

π̃9 = q1 · q3 · (1− q6) + q1 · (1− q3) · q5 + (1− q1) · q2 · q5
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Figure 6: Binomial tree with measure P

After these preparations, we are ready to think about the question under
which circumstances it is possible to express the measure Q in terms of the
measure P and vice versa. The (trivial) answer is to write simply for the
probability to reach node 9

π̃9 =
π̃9

π9
· π9,

in order to go from measure P to the measure Q and, on the other hand,

π9 =
π9

π̃9
· π̃9 .

in order to go from measure Q to the measure P. First, we notice that the
likelihood ratio corresponds to a stochastic process. This process is called
Radon-Nikodym derivative and denoted by dQ/dP or dP/dQ. Clearly, for
the Radon-Nikodym derivative to be well-defined, we need to assume that
nodes of the tree that are accessible under the measure Q are also accessible
under the measure P. In other words: we need to avoid dividing by zero
when forming the likelihood ratios. The formal definition is given by the
equivalence of the two measures: The two measures are equivalent if for each
set A the statement Q(A) > 0 is equivalent to P(A) > 0. For the binomial
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Figure 7: Binomial tree with measure Q

tree, this reduces to the statement that, nodes that are accessible under
one measure are also accessible under the other measure. By ’accessible’ we
mean simply that there is a non-zero probability to reach a node.

For equivalent measures, we can easily express the expectation value with
respect to one measure through the expectation value taken with respect to
the other measure. Consider a discrete random variable X, we find

EP(X) =
∑
i

xiπi =
∑
i

xi
πi
π̃i
π̃i = EQ

(
X
dP
dQ

)
(40)

For a normally distributed random variable, we can use this formula to
characterize the change of measure. This is due to the following basic fact:

Theorem. (Characterization of Gaussian variables)
The following two statements are equivalent:

1. A random variable X has a normal distribution N(µ, σ2) under a mea-
sure P

2. For all real θ, we have

EP

(
eθX
)

= eθµ+θ2σ2/2

25



Let’s look at a simple, but very instructive example: In order to define a
suitable Radon-Nikodym derivative, a simple choice is to have dQ/dP > 0.
Let Wt be a P-Brownian motion (hence normally distributed with zero mean
and a variance t), a possible choice would be

dQ
dP

= e−γWt−γ2t/2 > 0 .

Can we figure out what happens to Wt under the measure Q? If we are
lucky, Wt has still a normal distribution under the new measure (but maybe
with a different mean and/or variance). In this case, we should be able to
use the above theorem. Let’s try to compute

EQ

(
eθWt

)
= EP

(
dQ
dP

eθWt

)
= EP

(
e−γWt−γ2t/2eθWt

)
= e−γ

2t/2EP

(
e(θ−γ)Wt

)
= e−γ

2t/2e(θ−γ)2t/2

= e−γθt+θ
2t/2

Applying the above theorem again, we see that Wt has, under the measure
Q, again a normal distribution with mean −γt and variance t. In summary,
we have shown that, for a P Brownian motion Wt, we can construct an
equivalent measure Q such that, under the new measure Q, the Brownian
motion Wt has a mean −γt and a drift t. In particular W̃t = Wt + γt is
actually a Q-Brownian motion, since the term γt is used to compensate for
the negative drift. This is a special case of the following theorem:

Theorem. (Cameron-Martin-Girsanov theorem)
For a P-Brownian motion Wt and a previsible process γt, satisfying the

condition

EP

(
exp

(
1

2

∫ T

0
γ2
t dt

))
<∞

there exists a measure Q equivalent to P such that

W̃t = Wt +

∫ t

0
γs ds

is a Q-Brownian motion. The measures are related by the Radon-Nikodym
derivative given by

dQ
dP

= exp

(
−
∫ t

0
γs dWs −

1

2

∫ t

0
γ2
s ds

)
.

26



In the context of derivative pricing, we can use the Cameron-Martin-Girsanov
theorem in order to construct a martingale measure. Consider for example
a stochastic process Xt = µt + σWt with a P-Brownian motion Wt. Now,
we can write

Xt = σ
(µ
σ
t+Wt

)
= σ(γt+Wt) = σW̃t

since the Cameron-Martin-Girsanov theorem guarantees the existence of
an equivalent measure Q and the corresponding Q-Brownian motion W̃t.
Clearly, Xt is not a P-martingale, but it is obviously a Q-martingale.
Derivation of the Black-Scholes formula using the Girsanov theorem: We
can now derive again the Black-Scholes formula using the Cameron-Martin-
Girsanov theorem. The main step consists in considering the Black-Scholes
model with a stock and bond process given by

St = S0 eµt+σWt , Bt = B0ert

and forming the discounted stock process Zt = B−1
t St = S0 e(µ−r)t+σWt .

For a European claim X with maturity T , the initial price is given by V =
e−rTEQ(X), and Zt is a Q-martingale. Clearly, we want to use the Cameron-
Martin-Girsanov theorem to construct Q. Therefore, we use first Ito’s lemma
to find dZt:

dZt = Zt
(
(µ− r + σ2/2) dt+ σdWt

)
= σZt (γ dt+ dWt) , (41)

where we set γ = µ − r + σ2/2. Applying now the Cameron-Martin-
Girsanov theorem, we can construct the measure Q such that Zt becomes a
Q-martingale and W̃t = γt+Wt is a Q-Brownian motion. Clearly, we have
then Wt = W̃t−γt and we can use this in order to express the stock process
St in terms of W̃t:

St = S0 eµt+σWt = S0 eµt+σW̃t−(µ−r)t−σ2t/2 = S0 eσW̃t+(r−σ2/2)t (42)

For a European call, we have X = (ST −K)+, and thus the price of such a
call is computed as

V = e−rTEQ(X) = EQ

((
S0 eσW̃t−σ2t/2 −Ke−rT

)+
)

(43)

which is exactly the Black-Scholes formula.
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Construction Strategies

The martingale representation theorem in the continuous world: Let’s for a
moment look again at the simple case of zero-interest rates. Remember that,
in the discrete world, the binomial representation theorem would allow us
to construct a self-financing hedging strategy to replicate our claim: First,
we construct a measure Q, such that the stock process S on the tree is a
Q-martingale. Then, in the second step, we convert the claim X into a
process E, using the conditional expectation operator Ei = EQ(X|Fi). At
each step, we have

∆Ei = φi∆Si, Ei = E0 +
i∑

k=1

φk∆Sk .

In other words, at time-tick i, we need φi+1 units of the stock S and, there-
fore, ψi+1 = Ei − φi+1Si units of the bond. At time zero, our portfolio has
the value φ1S0 +ψ1 = E0 = EQ(X) which is the money we need to create it
(the price of the derivative). And, trivially, at time k, our portfolio will have
the value Ek such that, at maturity, it replicates the claim. For the case
with interest rates, all we needed to do was to define the discounted stock
process Zi = B−1

i Si and use this process Z to find the martingale measure
Q. And we would consider the discounted claim to define the process E via
Ei = EQ(B−1

T X|Fi). The value of the claim X at time-tick i was then given
by

Vi = BiEi = BiEQ(B−1
T X|Fi) . (44)

All these ideas carry over to the continuous world. Again, let us first write
down the continuous version of the martingale representation theorem:

Theorem. (Martingale representation theorem)
Given a Q-martingale M whose volatility is always non-zero and any other
Q-martingale N , there exists a previsible process φ such that N can be writ-
ten as

Nt = N0 +

∫ t

0
φs dMs

Using this theorem, we can proceed in the continuous world exactly in the
same way as in the discrete world: First, we find a measure Q, such that the
stock process St is a Q-martingale (again, we have r = 0). Then, convert
the claim X into a process via Et = EQ(X|Ft). Now, apply the martingale
representation theorem to construct a previsible process φt such that

dEt = φt dSt, Et = E0 +

∫ t

0
φsdSs
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Again, the hedging strategy will consist in holding φt units of the stock at
time t and ψt = Et − φtSt units of the bond, such that the value of the
portfolio at time t will be Vt = φtSt + ψt. What happens if we have an
interest rate r > 0? Similar to the discrete world, we need to consider now
the discounted stock process Zt = B−1

t St and use this process to find the
martingale measure Q. This is exactly what was done as an example at the
end of the last section for the Black-Scholes model. The value of the claim
X at time t is then - compare to (44)

Vt = BtEt = BtEQ(B−1
T X|Ft) . (45)

For the standard bond process Bt = B0ert we find

Vt = B0ertEQ(B−1
0 e−rTX|Ft) = e−r(T−t)EQ(X|Ft) (46)

The Black-Scholes Model

We already noted in the section introducing the change of measure as an
example how to derive the Black-Scholes formula using the Cameron-Martin-
Girsanov theorem.

V = e−rTEQ(X) = EQ

((
S0 eσW̃t−σ2t/2 −Ke−rT

)+
)

= S0Φ

(
ln(S0/K) + (r + σ2/2)T

σ
√
T

)
−K e−rT Φ

(
ln(S0/K) + (r − σ2/2)T

σ
√
T

)
Clearly, (if the claim X, as always assumed only depends on the final value
of the stock ST ), for a time 0 < t < T , we can write the value Vt = V (St, t)
for s = St as

V (s, t) = e−r(T−t)EQ(X|St = s) (47)

and, concerning the trading strategy, the number of shares that one needs
to hold to hedge the claim at time t is given by φt = ∂V/∂s which is the
continuous version of φ = (fu − fd)/(su − sd) valid in the discrete world.
With a little bit of algebra, one can prove that

φt =
∂V

∂s
(St, T − t) = Φ

(
ln(St/K) + (r + σ2/2)(T − t)

σ
√

(T − t)

)
(48)
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A second proof for the formula φt = ∂V/∂s comes from the fact that the
hedging strategy is self-financing, meaning that we have

dVt = φtdSt + ψtdBt (49)

Under the martingale measure, the SDE for the stock process yields

dSt = σStdW̃t + rStdt (50)

and, for the bond process, we have as always dBt = rBtdt. Together, this
yields the following representation of dVt:

dVt = σStφtdW̃t + (rStφt + rψtBt) dt (51)

Now we can derive a second representation of dVt using Ito’s lemma:

dVt = dV (St, t) =

(
σSt

∂V

∂s

)
dW̃t+

(
rSt

∂V

∂s
+

1

2
σ2S2

t

∂2V

∂s2
+
∂V

∂t

)
dt (52)

Comparing the two expressions, we find

φt =
∂V

∂s
, rs

∂V

∂s
+

1

2
σ2s2∂

2V

∂s2
+
∂V

∂t
= rV (53)

The latter equation is a partial differential equation that can be solved (with
the appropriate final condition) in order to obtain the option price.
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Exercises

1. (10 points) An investor agrees to sell insurance for a portfolio of 100
identical mortgages against defaults. Assume independence and that
the random variable X counting the number of defaults has a binomial
distribution with p = 0.1. The investor agrees to pay a flat fee of $10M
if X is between 20 and 30.

(a) Compute P (X = 8), µX , and σX .

(b) Find P (20 ≤ X ≤ 30).

(c) What would be the ’fair’ price for the insurance contract?

(d) How does this price change if p = 0.11?

2. (5 points) Show that the following formula holds for a random variable
X with a Gaussian distribution (mean µ and variance σ2), and for a
real number θ:

E
(

eθX
)

= exp

(
θµ+

1

2
θ2σ2

)
3. (5 points) Show that if Bt is a zero-volatility process and Xt is any

stochastic process, then

d(BtXt) = BtdXt +XtdBt

4. (5 points) Use Ito’s formula and the rule above to check whether the
following process

Yt = W 3
t − 3tWt

is a martingale.

5. (5 points) What is the solution of

dXt = Xt(σdWt + µ sin(t)dt), X0 = a > 0

where σ and µ are assumed to be constants?

6. (5 points) Consider the stochastic differential equation (SDE)

dXt = σdWt + µdt, X0 = a > 0

where σ and µ are constants.

(a) Write down the solution Xt of this SDE.
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(b) Find mean and variance of Xt.

(c) Write down the probability density p(x, t) of Xt.

7. (10 points) Consider a stock St = S0eσWt , with a P-Brownian motion
Wt.

(a) Show that St is not a P-martingale.

(b) Use the Girsanov theorem to construct a measure Q such that St
is a Q-martingale. Express St in terms of a Q-Brownian motion
W̃t.

(c) Assume σ = 0.2, S0 = $10. No interest rates. What is the value
of a bet that pays $20 if the stock is worth less than $8 after two
years?

8. (10 points) Show that sΦ′(d1) = ke−r(T−t)Φ′(d2) when

d1 =
log(s/k) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 =
log(s/k) + (r − σ2/2)(T − t)

σ
√
T − t

,

Use this result to show that

φt =
∂V

∂s
(St, T − t) = Φ

(
log(St/k) + (r + σ2/2)(T − t)

σ
√
T − t

)
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