
Lecture 1: Financial markets and arbitrage

(a) Stocks, bonds, options, and arbitrage

The parable of the bookmaker

Consider a race between two horses (”red” and ”green”). Assume that the
bookmaker estimates the chances of ”red” to win as 25% (and hence the
chances of ”green” to win are 75%). This corresponds to 3-1 against ”red”
(or 1-3 on ”green”). Let’s assume that $5,000 are bet on ”red”, and $10,000
on ”green”. We define a random variable X for the profit (or loss) of the
bookmaker after the race. If ”red” wins, he needs to pay $3·5,000, but
keeps the $10,000, so X is -$5,000. If ”red” loses, ”green” wins, and the
bookmaker has to pay $10,000/3, but keeps the $5,000.

So, in this case, X takes the value $5,000/3 ≈ $1667. In summary, the
bookmaker might win or lose money. This means that there is a risk for the
bookmaker - equivalent to himself was betting on the race.
We can cast this in terms of probabilities: let p = 1/4 be the probability
that ”red” wins. The diagram below illustrates the situation:

red wins (X = −$5000)

Start

green wins (X = $1667)

1/4

3/4

Clearly, we have E(X) = $0, but this is only an average taken over many
(theoretical) realizations of X.

However, things do not have to be that way. The risk clearly depends
on the way the bookmaker is quoting the odds. Therefore, we might ask the
question: Is there a way to quote odds such that the bookmaker will remain
risk-neutral? This might seem odd at first, but - from the point of view
of the bookmaker, this is the most reasonable position to take. Of course,
he will take a commission for his services and make a living in that way -
without any risk related to the random outcome of the race.

Indeed, this is possible: If the bookmaker quotes the odds as 2-1 against
”red”, he will be risk-neutral: If ”red” wins, he needs to pay $2·5,000, but
keeps the $10,000. If ”red” loses the race, he needs to pay $10,000/2, but
keeps the $5,000. In either case, the bookmaker breaks even, there is no risk
in selling the bets.
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red wins (X = 0)

Start

green wins (X = 0)

1/3

2/3

Note that these odds only depend on the sums of money that were bet
on the horses - not on the real-world probabilities of the horses to win the
race. In fact, such real-world probabilities are difficult to estimate, but in
quoting the odds for the race they do not play any role for a bookmaker
who intends to remain risk-neutral.

The situation is similar in finance when dealing with so-called derivative
which are contract that are derived from fundamental assets. Consider, for
instance a stock that is worth $1. After a time δt, the stock can either go
up to $2 or go down to $0.5. What is the price of a bet that pays $1 if the
stock goes up?

su=$2

snow = $1

sd=$0.5

fu=$1

fnow=???

fd=$0

The main idea is that the seller of the bet can invest in the stock to
hedge the claim and this possibility gives him a chance to sell the bet and
still stay risk-neutral. All that he needs to do is to set up a portfolio that
will have the worth of the claim after the time δt. Let’s denote the value of
the bet (after the time-tick) by fu = $1, if the stock goes up and fd = $0, if
the stock goes down.

Consider a portfolio of φ units of stock and ψ units of a cash bond. For
simplicity, we assume that the interest rate is zero. At the beginning, before
the time-tick δt, the worth of the portfolio is

V = φS + ψB .

Here, S is the current stock price (in our case $ 1) and B - as we are working
in dollars, we set B = $1. When the clock ticks, the value of ψB will not
change (since we assumed that the interest rate is zero), but the value of φS
will change, since the value S after the time-tick δt is random. If the stock
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goes up, we will have S = su = $2 and if the stock goes down, we will have
S = sd = $0.5. If you are selling the bet and if you want to be risk-neutral,
you will tri to adjust the portfolio (hence φ and ψ) such that V will have
the value of $1 if the stock goes up and $0 if the stock goes down (to mimic
the claim). It is easy to figure out what φ and ψ should be:

Vu = φsu + ψB = fu = 1

Vd = φsd + ψB = fd = 0

This is an equation with two unknowns, and clearly we have

φ =
fu − fd
su − sd

=
1− 0

2− 0.5
=

2

3
(1)

and, from either equation, we find ψ = −1/3. This means that, in oder to
set up a risk-free portfolio that mimics the bet (claim), one needs

V =
2

3
· $1− 1

3
· $1 = $0.33 .

And this is exactly the price (or worth) of the bet that the seller will ask
from the buyer.

Basics of financial markets, derivatives

Stock and Bond: Our basic financial market consists of two types of assets:
stocks and bonds. The stock is random, meaning that we cannot predict its
value for future times. We will see later that exponential Brownian motion
is a basic model and write

St = S0 eµt+σWt .

The parameter µ is called the average rate of return and measures the av-
erage growth (or decline) of the stock. The parameter σ is called volatility
and measures the strength of the price fluctuations. The precise meaning
of Wt will become clear later - at this point we only need to know that St
is random, hence that its future value is not known. The other asset, the
cash bond, is deterministic. If we assume an interest r ≥ 0 and compound
continuously, we find that the value of the bond at a future time t is known:

Bt = B0 ert = B0 lim
n→∞

(
1 +

r

n

)nt
Most of the time, we will set B0 = 1 (think of it as $1 at time t = 0).
Basic assumptions: In our analysis, we usually assume the following:
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• no transaction costs

• no tax

• unlimited borrowing/short-selling

• fixed interest rate, same rate if you borrow or lend

• all assets can be split

• no arbitrage

Derivatives: If an asset is derived from a basic asset, we call it a derivative.
Options are important examples. The buyer of the option acquires the right
(but has no obligation) to do something (usually to buy or to sell an asset
for an agreed price) at a future time.

• Call option: gives the holder of the option the right to buy a stock for
a price K.

• Put option: gives the holder of the option the right to sell a stock for
a price K.

In both cases, we call K the strike price. The corresponding pay-offs are

• Pay-off of a call option: (ST −K)+ = max(ST −K, 0).

• Pay-off of a put option: (K − ST )+ = max(K − ST , 0).

Moreover, we distinguish between European and American options:

• European option: can only be exercised at the expiration date.

• American option: can be exercised at expiration date or any time
before expiration date

In the following, for simplicity, we will focus on European options. Example:
Consider a European call of a stock that is worth now S0 = $100 with strike
price K = $120 and a maturity of T = 2 years. If, at expiration, the stock
is worth ST = $150, the worth of the call is the difference, hence $30: The
holder of the option will exercise the option, hence buy a stock for K = $120
and then sell it at the current value of $150. If, on the other hand, the stock
happens to be worth ST = $90, the option will expire worthless (and not
exercised, as nobody would pay K = $120 for a stock that one can buy for
$90).
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Arbitrage

Why is it so important to price options correctly? Consider, for example, a
stock is worth $100 now, a bond worth $100 as well. Assume that the stock
could go up or down $20 in one year (so su = $120 and sd = $80), and that
the bond will be worth $110. Assume that a bank offers a European call,
K = $100 for $10. What would you do? Here is a smart idea: Buy 2/5
of the bond, one call option, sell 1/2 of the stock. The cost to set up this
portfolio is

V =
2

5
· 100 + 10− 1

2
· 100 = 0 .

So, you can set up this portfolio for free. What will happen in one year? If
the stock goes up, the call will be worth $20 and, therefore,

V =
2

5
· 110 + 20− 1

2
· 120 = 44 + 20− 60 = 4 .

If, on the other hand, the stock goes down, we find

V =
2

5
· 110 + 0− 1

2
· 80 = 44 + 0− 40 = 4 .

We would have found a way to make money for free! Such arbitrage oppor-
tunities should not exist in a market that is in equilibrium - and a correct
(risk-free inspired) pricing of options is essential for this.
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(b) Option pricing on a tree

Binomial pricing model with non-zero interest rates

Assume now that we have non-zero interest rates, such that ψ units of the
cash bond B0 will have the value

ψB0e
rδt

after a time δt. Again, we consider the basic binomial pricing situation
where the stock can have two values after the time-tick δt, together with a
derivative that also can have two values.

su

snow

sd

fu

fnow=???

fd

Again, we will set up a portfolio V at the beginning to replicate the claim,
and the money we need to create this portfolio will correspond to the price
that we charge for the derivative, hence Vnow = fnow. Consider

V = φS + ψB

Before the clock ticks, this portfolio has the value

Vnow = fnow = φsnow + ψB0 (2)

and, after the time-tick, we need to satisfy the equations

fu = φsu + ψB0e
rδt

fd = φsd + ψB0e
rδt

and, again, we find that

φ =
fu − fd
su − sd

.

Note that this is the same formula as in the case of zero interest rates:
In order to replicate the claim, a certain number of shares of the stock
are necessary: The amount of stock to hold is given by the ratio of the
difference of the claim and the difference of the stock given by the two
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possible scenarios. In the spirit of replicating the claim by the appropriate
stock holding, we can also write equivalently

fu − fd = φ(su − sd) ,

which is, therefore, trivial to remember. In order to proceed with the calcu-
lation of the initial price of the claim (or the initial portfolio), we still need
to find the holding ψ of the cash bond. Going back to the above system of
equations, if we multiply the first equation by sd and the second equation
by su and subtract the first equation from the second equation, we obtain
directly

ψ = B−10 e−rδt
(
fdsu − fusd
su − sd

)
(3)

and, putting everything together, we find the formula for the price of the
initial portfolio (and hence the value of the claim before the time-tick) as

V =
fu − fd
su − sd

snow + e−rδt
(
fdsu − fusd
su − sd

)
(4)

Again, it is important to see that this formula is entirely independent of
any ”real-world” probabilities that one might associate with the event of
the stock S going up to su or going down to sd. The price of the claim
is determined by the idea of setting up a risk-less portfolio that replicates
the claim, nothing else, a mechanism that is independent of the real-world
probabilities. The estimate of the real-world probabilities might play a role,
whether a buyer finds the claim attractive: Consider a call option that is
attractive if the buyer believes that the stock is likely to go up: Even if most
people feel, that there is a 90% chance of the stock to go up, the seller of the
option will still price it independent of this probability: The option price is
enforced by the requirement of setting up a risk-less portfolio.
Risk-neutral probability measure: The formula for the claim on a binomial
branch (4) can be rewritten in a form that is much simpler to remember:
First, define q as

q =
erδtsnow − sd
su − sd

. (5)

It can be shown that 0 < q < 1. With this q, we can calculate the price of
the initial portfolio as

V = e−rδt (qfu + (1− q)fd) . (6)
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In the interest-free case r = 0, this formula has the form of an expectation
for a binomial branch with the probability q.

V = fnow = qfu + (1− q)fd (7)

Interestingly, in that case, the q is defined by (5) in a way that

snow = qsu + (1− q)sd (8)

In this way, the pricing formula is simple to remember (at least for the case
r = 0): First find the risk-neutral probability q defined such that the current
stock value is the expectation of two possible future stock values and then
use this probability to compute the initial price of the claim by taking the
expectation of the two possible claim values.

su

snow

sd

q

1-q

fu

fnow

fd

q

1-q

In this language, we can use all the tools from probability theory - knowing
that q is not a ”real-world” probability, but the risk-neutral probability.
Returning to the example of a bet that pays $1 if a stock goes up (and the
stock, priced at $1 now can take the values $2 and $0.50 after the time-tick),
we find that

q =
1− 0.5

2− 0.5
=

1

3
, V =

1

3
· 1 +

2

3
· 0 =

1

3
.

Example for a call option: As a second example, take the above case of
the a stock that is worth now $100 and can go up to $150 or down to $90.
Consider a strike price K = $120 and a time-tick of one year with r = 5%.
We then compute q as

q =
erδtsnow − sd
su − sd

=
100 · e0.05 − 90

150− 90
= 0.2521

and find as option value

V = e−0.05 (q · 30 + (1− q) · 0) = 7.19
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Binomial Trees

From branch to tree: With the basic pricing formula for a branch on hand,
we can extend the pricing to trees easily. Simply apply the branch formula
to each branch of the tree. Let’s illustrate this idea using a simple example.
Consider three time-ticks, and a stock with a value of 100 at the beginning
that can go up or down 20 at each time-tick. Then, the corresponding stock
process is given by the following tree:

160

140

120 120

100 100

80 80

60

40

Figure 1: Binomial tree of the stock process

Consider, for instance, the branch on the top right corner. Here, su = 160,
sd = 120, and snow = 140. Since the strike price of the option is K = 100,
we know that, at the part of the tree, we have fu = 60 and fd = 20. From
the stock values, we find immediately the risk-neutral probability q as

q =
snow − sd
su − sd

=
140− 120

160− 120
=

1

2

and, therefore, fnow = qfu + (1 − q)fd = 40. It is easy to see that, in this
particular case, we have q = 1/2 on the entire tree. Since the option value
is known at the end nodes of the tree, we can work backward and obtain
the option price at the beginning of the tree (here 15). Figure shows the
corresponding option tree. Working backward is a good idea as we need to
set up a portfolio that replicates the value of the claim (here the option) at
all nodes of the tree. Let us know see how the hedging works for a particular
path:
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60

40

25 20

15 10

5 0

0

0

Figure 2: Binomial tree of the option process

Time i = 0 We are given 15 for the option. To set up the portfolio, we need to
know how much of the stock is required. As before, we write the
portfolio as

V = φS + ψB

At time i = 0, we find the amount of stock we need to hold to be
risk-neutral to be

φ =
fu − fd
su − sd

=
25− 5

120− 80
=

1

2

As the price of the stock at the beginning of the tree is S0 = 100, the
cost is 0.5 ·100 = 50 and we are given 15 for writing the option. Hence
we need to borrow 35 (and we assume, for simplicity, at the moment
that the interest rate r = 0). Therefore, our bond holding is now -35.
To summarize, at time i = 0, before the first time-tick, our holdings
are (φ, ψ) = (0.5,−35).

Time i = 1 Assume that the stock goes up. Now we need to see whether we need
to adjust our holdings of stock and bond. First, we need to compute
the new φ. The φ necessary to be risk-neutral at this node of the tree
is computed by looking at the next step ahead, hence

φ =
fu − fd
su − sd

=
40− 10

140− 100
=

3

4

Since we are already holding 0.5 shares in our portfolio, we need to buy
only 0.25 shares in addition. Now, the stock is worth S1 = 120, hence
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the cost of the additional shares is 0.25 · 120 = 30, which brings our
debt to 65. To summarize, at time i = 1, at the node where S1 = 120,
our holdings are (φ, ψ) = (0.75,−65).

Time i = 2 The new φ is now

φ =
fu − fd
su − sd

=
60− 20

160− 120
= 1

Note, that at this node, the option is in the money, for sure and will
be exercised at the next time-tick. Considering our portfolio, we are
already holding 3/4 of shares, so we need to buy 1/4 in addition. The
price of the stock is now S2 = 140, so the cost of this additional 0.25 is
0.25 · 140 = 35 which brings our debts to 100. To summarize, at time
i = 2, at the node where S1 = 140, our holdings are (φ, ψ) = (1,−100).

Time i = 3 The clock ticks one more time and the holder needs to decide whether
to exercise the option. The bank, on the other hand, has created a
portfolio whose value replicates the value of the claim (the option)
such that the bank is risk-neutral. In our case, we see that if the stock
goes up one more time, to S3 = 160, the option in worth S3−K = 60.
The portfolio has the same value:

V = φS + ψB = 1 · 160− 100 · 1 = 60

If, on the other hand, the stock happens to go down at the last step,
hence S3 = 120, the option is worth 20. Obviously, in this case, the
portfolio has the value 20 as well:

V = φS + ψB = 1 · 120− 100 · 1 = 20

Either way, the portfolio has the same value as the option at maturity,
hence the bank remains risk-neutral. Note that, in order to main-
tain risk-neutrality, the bank had to adjust the holdings (φ, ψ) in the
portfolio according to the stock movements. This is called a dynamic
hedging strategy. Also, the same idea works for any stock path (but
the actual values of (φ, ψ) differ usually for different paths. However,
no matter which path the stock takes, the initial money paid for the
option (here the 15 dollars), is always sufficient to set up a risk-free
portfolio. Hence, the hedging strategy is self-financing. Of course, we
might need to borrow money to buy part of the stock, but we will
always be able to pay back our debts at the end.
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(c) Derivation of the Black-Scholes formula

The Black-Scholes Model

We are now ready to transition to the continuous world. All we need to do is
to formulate a stochastic process at discrete time steps δt such that we will
be able to take a meaningful limit δt→ 0. We will see that this, ultimately,
will be made possible via the Central Limit Theorem and the transition of
the binomial distribution to the normal distribution. However, we only can
establish convergence, if we have the appropriate scaling of the ’up’- and
’down’-movements of the stock with δt. It will turn out that the following
scaling is appropriate: We will derive the famous Black-Scholes formula in

su = snow · eµδt+σ
√
δt

snow

sd = snow · eµδt−σ
√
δt

four steps:

1. Characterize a stock process on a tree with N steps, such that we can
take later the limit N →∞.

2. Compute the risk-neutral probability q using a Taylor expansion.

3. Use the Central Limit Theorem in order to write the option price as
an expectation with respect to a Gaussian probability density.

4. Rewrite the integral in terms of the cumulative normal distribution
function.

Characterization of the stock process: Consider such a process with many
time steps, such that N · δt = T , where T is the time of maturity of the
option. In this tree, with N time-ticks, each path corresponds to a possible
realization of the stock process. Let’s define a random variable XN that
counts the number of ’up’-jumps. Then, of course, we will have N − XN

’down’-jumps. The value at the end node of the tree for a path with XN

’up’-jumps and N −XN ’down’-jumps is given by

ST = S0 exp
(
Nδt · µ+ σ

√
δt(XN − (N −XN ))

)
= S0 exp

(
µT + σ

√
T

2XN −N√
N

)
(9)
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Note that, under the above assumptions, the value of the stock at the end
node only depends on the number of ’up’ and ’down’ movements, not on the
particular path that the stock took. Therefore the random variable XN is
sufficient to characterize all possible scenarios of the stock path.
Taylor expansion of the risk-neutral probability: As usual, we obtain the
risk-neutral probability using the basic formula

q =
snowerδt − sd
su − sd

=
erδt − eµδt−σ

√
δt

eµδt+σ
√
δt − eµδt−σ

√
δt

Now we make use of the fact that δt is small. The resulting approximation
for q is slightly tricky to compute as the terms above involve

√
δt, but we

already did this earlier and the final result of the computation is

q ≈ 1

2

(
1−
√
δt

(
µ+ σ2

2 − r
σ

))
. (10)

Application of the Central Limit Theorem: Let us write

ST = S0 eY , Y = µT + σ
√
T

(
2XN −N√

N

)
(11)

Clearly, XN has a binomial distribution and, therefore, under the measure
Q we have

EQ(XN ) = E(XN ) = Nq, Var(XN ) = Nq(1− q) (12)

We compute now the expectation and the variance of Y . First, we see that

E
(

2XN −N√
N

)
=

2Nq −N√
N

= −
√
δt√
N

(
µ− r + σ2/2

σ

)
·N

= −
√
T

(
µ− r + σ2/2

σ

)
Therefore, for the expectation of Y (under the measure Q), we find

E(Y ) = µT − σ
√
T
√
T

(
µ− r + σ2/2

σ

)
= (r − σ2/2)T
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The variance, on the other hand, is slightly easier to compute in this ap-
proximation as we need to take into account only the leading order term
(q ≈ 1/2). Thus we find

Var

(
2XN −N√

N

)
≈ N · 1

2

(
1− 1

2

)
· 4

N
= 1 . (13)

For the variance of Y we obtain

Var(Y ) = σ2T . (14)

Therefore, as the time to maturity T is fixed, we can now take the limit
N → ∞ corresponding to δt → 0. In this limit, the binomial distribution
tends to a normal distribution and we can write ST therefore as

ST ≈ S0 e(r−σ
2/2)T+σ

√
TZ , Z ∼ N(0, 1) . (15)

We are now ready to write the option price as an expectation value: For
a European call option X = (ST −K)+ the expectation of the discounted
claim is written as

V = E
(
e−rTX

)
= E

(
(e−rTST −Ke−rT )+

)
= E

(
(S0 eσ

√
TZ−σ2T/2 −Ke−rT )+

)
Rewriting the integral using the cumulative normal distribution: The above
expectation value can be rewritten by using the cumulative normal distri-
bution Φ defined as

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2 dy . (16)

Theorem. (Black-Scholes Option Pricing) The price V of a European call
option with strike price K is given by

V = E
(

(S0 eσ
√
TZ−σ2T/2 −Ke−rT )+

)
= S0Φ(d1)−K e−rT Φ(d2) (17)

with

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

, d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

. (18)
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Proof. In order to compute the above integral, let’s first write

V =

∫ ∞
−∞

p(z)
(
S0 eσ

√
Tz−σ2T/2 −Ke−rT

)+
dz , p(z) =

1√
2π

e−z
2/2 .

Now we note that(
S0 eσ

√
Tz−σ2T/2 −Ke−rT

)+
= max

(
S0 eσ

√
Tz−σ2T/2 −Ke−rT , 0

)
.

For values of z that are negative and large in absolute value, the contribution
will be zero as the first term will be negative. However, as z increases, we
see, that there is a ’critical’ z = zc such that for z > zc, there will be non-zero
contributions to the integral. This zc is determined by the equation

S0 eσ
√
Tzc−σ2T/2 = Ke−rT (19)

Solving this equation for zc yields after a couple of lines of algebra

zc =
ln(K/S0) + (σ2/2− r)T

σ
√
T

. (20)

This allows us to rewrite the integral for the option price V by

V = S0

∫ ∞
zc

eσ
√
Tz−σ2T/2p(z) dz −Ke−rT

∫ ∞
zc

p(z)dz (21)

For the second integral, we find immediately (z̃ = −z)∫ ∞
zc

p(z)dz =

∫ −zc
−∞

p(z̃)dz̃ = Φ(−zc)

= Φ

(
ln(S0/K) + (r − σ2/2)T

σ
√
T

)
= Φ(d2)

The first integral is left as an exercise.
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Exercises

1. (5 points) Consider again a bookmaker taking bets on a horse race.
Assume a race with n horses, and an amount Ak bet on the k-th horse.
What odds shall the bookmaker quote for each horse? What are the
implied probabilities for the horses to win?

2. (5 points) Consider a stock process S on a tree. S starts at time i = 0
at S0 = 20 and it can go up or down 18% every year. The interest
rate is 6%.

(a) Sketch the stock process for two years.

(b) Consider a European call option at a strike price of K = 25 and
with an expiration date of two years. Find the value of the option
at all nodes of the tree.

3. (5 points) A stock process starts at time 0 at 100 and then can go 30
up or 10 down for each time step. We consider two time steps, the
risk-free interest rate is zero. Consider a European call option with
strike price of $100.

(a) Sketch the Stock process.

(b) Find the option value at all nodes of the tree.

(c) Assume that the stock first goes down and then goes up. Com-
pute the necessary holdings (φ, ψ) of stock and bond at each time
step to hedge the above option.

4. (10 points) Consider a stock process S on a tree. S starts at time i = 0
at S0 = 77 and it can go up or down 30% every year. The interest
rate is 2%.

(a) Sketch the stock process for two years.

(b) Consider a European call option at a strike price of K = 88 and
with an expiration date of two years. Find the value of the option
at all nodes of the tree.

(c) Consider now a stock process following the Black-Scholes model
with a volatility of 30%. If all other parameters are the same as
before in the discrete model, what will be the price of the option
according to the Black-Scholes formula?
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5. (10 points) Use a Taylor expansion to show that indeed

q ≈ 1

2

(
1−
√
δt

(
µ+ σ2

2 − r
σ

))
.

6. (10 points) Compute the second integral to complete the proof of the
Black-Scholes formula

V = EQ

[(
S0 exp(σ

√
TZ − σ2

2
T )− k exp(−rT )

)+
]

= S0Φ

(
log(S0/k) + (r + σ2

2 )T

σ
√
T

)
− ke−rTΦ

(
log(S0/k) + (r − σ2

2 )T

σ
√
T

)

where Φ is the cumulative normal distribution function defined as
Φ(x) = Q(Z ≤ x).
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