Due: Tue Dec $8\ 2020$

Problem 1 (10 points)

Show that the Lorentz transformations form a group by proving $(\beta \equiv v/c)$

$$L_{\beta_1} \circ L_{\beta_2} = L_{\beta}, \qquad \beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}.$$

Problem 2 (10 points)

A particle of rest mass m and initial velocity v_0 along the x-axis is subject after t = 0 to a constant force F acting in the y-direction.

- 1. Find the magnitude of the velocity of the mass m at any time t. Show that $|\mathbf{v}| \to c$ for $t \to \infty$.
- 2. Assuming that the particle started at t = 0 at the origin (0,0), find the x and the y coordinate of the particle at any time t.

Problem 3 (10 points)

Assume a Hamilton function H of a particle of mass m given by

$$H(q,p) = c\sqrt{m^2c^2 + p^2} - \lambda q$$

- 1. Find Hamilton's equations of motion and solve them for the initial conditions $q(0) = \dot{q}(0) = 0$.
- 2. Find H for the non-relativistic limit $p/(mc) \to 0$.