- 1. Prove or disprove the following statement: Assume G is a group. If for all $a \in G$ we know that $a^2 = e$ (where e is the neutral element), then G is Abelian. Is the converse statement true?
- 2. For $a, b \in \mathbb{R}$, define the operation \bigotimes as $a \bigotimes b = ab 4$. Is this operation associative?
- 3. Consider $H = \{0, 2, 4\} \subset \mathbb{Z}_6$. Is H a subgroup of \mathbb{Z}_6 ?.
- 4. Prove that the neutral element of a group is unique.
- 5. Write down the elements of U(22). What is $7 \cdot 21$ in U(22)? What is the inverse element of 3?
- 6. Find all solutions to $z^5 = 32$ in \mathbb{C} .
- 7. List all the elements of \mathbb{Z}_{12} and, for each element, find its order.
- 8. If a, b, c are group elements and |a| = 6, |b| = 7, express $(a^4c^{-2}b^4)^{-1}$ without negative exponents.
- 9. Show that U(14) is cyclic.
- 10. Prove by induction that, for all positive integers n, $n^3 + (n+1)^3 + (n+2)^3$ is a multiple of 9.