- 1. (10 pts) Prove that a group of order 3 must be cyclic.
- 2. (20 pts) Consider the following permutations:

$\alpha =$	1	2	3	4	5	6	<i>в</i> —	[1]	2	3	4	5	6
	2	1	3	5	4	6	$\rho =$	6	1	2	4	3	5

Compute α^{-1} , $\beta \alpha$, and $\alpha \beta$.

3. (20 pts) Consider the following permutations:

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix} \qquad \beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$$

Compute α , β , and $\alpha\beta$ as products of cycles.

- 4. (10 pts) Let G be a group of permutations on a set X. Let $a \in X$, and define stab $(a) = \{ \alpha \in G : \alpha(a) = a \}$ (stabilizer of a in G). Prove that stab(a) is a subgroup of G.
- 5. (10 pts) Show that $\phi(x) = \sqrt{x}$ is an automorphism of \mathbb{R}^+ under multiplication.
- 6. (10 pts) Show that U(8) is not isomorphic to U(10).
- 7. (10 pts) Show that U(8) is isomorphic to U(12).
- 8. (10 pts) Let G be a group under multiplication, \overline{G} a group under addition and ϕ an isomorphism $G \to \overline{G}$. If $\phi(a) = \overline{a}$ and $\phi(b) = \overline{b}$, express $\phi(a^3b^{-2})$ in terms of \overline{a} and \overline{b} .