Review: Probability and Statistics

Basic Probability

A probability model consists of three components:
(1) A set Ω of elementary outcomes called the sample space.
(2) A set \mathcal{G} of possible events (subsets of Ω).
(3) A probability function P that assigns probabilities (real numbers between 0 and 1) to events in \mathcal{G}. The axioms of probability are:
(1) $P(A) \geq 0$ for all $A, \quad P(\Omega)=1$.
(2) If A and B are disjoint events, then $P(A \cup B)=P(A)+P(B)$.

Important properties:

$$
P(\Omega-A)=1-P(A), \quad P(\emptyset)=0, \quad P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

The conditional probability of A given B is defined as follows:

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

Important properties of conditional probabilities:

$$
P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B), \quad P(A \mid B)=P(A) P(B \mid A) / P(B)
$$

Two events are said to be independent if the following three (equivalent) conditions hold:

$$
P(A \cap B)=P(A) P(B), \quad P(A)=P(A \mid B), \quad P(B)=P(B \mid A)
$$

Discrete Random Variables

A random variable X is a real-valued function on the sample space Ω. If the range of X is finite or countable, X is called discrete, otherwise X is called continuous. For discrete random variables, the expectation value $\mathbb{E}(X)$ of X (often denoted as μ_{X}), the variance $\operatorname{Var}(X)$, and the standard deviation σ_{X} are defined as follows:

$$
\mu_{X} \equiv \mathbb{E}(X)=\sum_{x} x P(X=x), \quad \sigma_{X}^{2}=\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\mathbb{E}\left[X^{2}\right]-\left(\mu_{X}\right)^{2}
$$

Important Discrete Distributions

(1) Binomial Distribution

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \mathbb{E}(X)=n p, \quad \operatorname{Var}(X)=n p(1-p)
$$

(2) Poisson Distribution

$$
P(X=k)=\frac{\mu^{k}}{k!} \mathrm{e}^{-\mu}, \quad \mathbb{E}(X)=\mu, \quad \operatorname{Var}(X)=\mu
$$

Continuous Random Variables

A probability distribution function f and the cumulative distribution function F have the following properties: (h is an integrable real function)

$$
P(\{X \leq x\})=\int_{-\infty}^{x} f(s) d s=F(x), \quad \mathbb{E}(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x
$$

Important Continuous Distributions

(1) Gaussian (Normal) Distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right), \quad \mathbb{E}(X)=\mu, \quad \sigma_{X}=\sigma, \quad \mathbb{E}(\exp (\theta X))=\exp \left(\theta \mu+\frac{1}{2} \theta^{2} \sigma^{2}\right)
$$

(2) Log-normal Distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \frac{\exp \left(\frac{-(\ln x-\mu)^{2}}{2 \sigma^{2}}\right)}{x}, \quad \mathbb{E}(X)=\mathrm{e}^{\mu+\sigma^{2} / 2}, \quad \sigma_{X}^{2}=\mathrm{e}^{\mu+\sigma^{2} / 2}\left(\mathrm{e}^{\sigma^{2}}-1\right)
$$

