MTH 416 - Fall 2019 - Practice II Review: Mon Dec 2, 2019

- 1. Let W_t be a \mathbb{P} -Brownian motion. and let $Y_t = W_t + t$.
 - (a) What are $\mathbb{E}_{\mathbb{P}}(Y_t)$ and $\mathbb{E}_{\mathbb{P}}(Y_t^2)$?
 - (b) Find $\mathbb{E}_{\mathbb{P}}(Y_t^3)$. Hint: Make use of the symmetries of the underlying probability distribution.
 - (c) Use Ito's Lemma to find $d(Y_t^2)$ and $d(Y_t^3)$.
- 2. Consider $X_t = \sigma W_t + \mu t$ with a P-Brownian motion and use the Girsanov theorem to find a Q- Brownian motion \tilde{W}_t such that $X_t = \sigma \tilde{W}_t$. Compute both $\mathbb{E}_{\mathbb{Q}}(X_t^2)$ and $\mathbb{E}_{\mathbb{P}}(X_t^2)$.
- 3. Let $S_t = \exp(\mu t + \sigma W_t)$ with a P-Brownian motion W_t . Consider the random process $X_t = \exp(-rt)S_t$.
 - (a) Write down the stochastic differential equation that X_t satisfies.
 - (b) Use the Girsanov theorem to construct a measure \mathbb{Q} and a \mathbb{Q} -Brownian motion \tilde{W}_t such that dX_t is driftless with respect to \mathbb{Q} .
 - (c) Write S_t in terms of \tilde{W}_t .

4. Let
$$X = S_t^{-\alpha}$$
, with

$$S = S_0 e^{\sigma W_t + (r - \sigma^2/2)t}$$

with a Q-Brownian motion W_t . For which α is X a Q-martingale?

5. Consider a stock process that follows an exponential Brownian motion under the measure $\mathbb P$

$$S_t = S_0 \mathrm{e}^{\sigma W_t + \mu t} \tag{1}$$

We know that under the risk-free measure \mathbb{Q} , using a \mathbb{Q} -Brownian motion \tilde{W}_t , we can write

$$S_t = S_0 \mathrm{e}^{\sigma \tilde{W}_t + (r - \sigma^2/2)t} \tag{2}$$

where r is the interest rate. Assume now r = 5%, $\mu = 10\%$, $\sigma = 30\%$ and consider a claim that pays \$100 if, after two years, the stock price S_T is larger than $2 \cdot S_0$, if $S_0 = 100 is the initial value of the stock. What is the price of such a claim?