Problem 1 (10 points)

Let W_t be a \mathbb{P} -Brownian motion.

- 1. Compute $\mathbb{E}_{\mathbb{P}}(W_t^2 2t)$
- 2. Compute $\mathbb{E}_{\mathbb{P}}(\mathrm{e}^{2W_t})$
- 3. Assume that

$$p(x,t) = \alpha(t)x^2 e^{-x^2/(2t)}$$

is the density of a process X_t . Find $\alpha(t)$. Hint: $\mathbb{E}(W_t^2) = t$.

Problem 2 (10 points)

Let W_t be a \mathbb{P} -Brownian motion.

- 1. For $X_t = e^{-2W_t}$, compute dX_t .
- 2. For $X_t = W_t^3 e^{2t}W_t$, compute dX_t .
- 3. Which equation do σ and μ satisfy if

$$X_t = (\sigma W_t)^2 - \mu t$$

is a martingale?

Problem 3 (10 points)

Consider a stock $S_t = S_0 e^{\sigma W_t + t}$, with a P-Brownian motion W_t .

- 1. Show that S_t is not a \mathbb{P} -martingale.
- 2. Use the Girsanov theorem to construct a measure \mathbb{Q} such that S_t is a \mathbb{Q} -martingale. Express S_t in terms of a \mathbb{Q} -Brownian motion \tilde{W}_t .
- 3. Assume $\sigma = 0.3$, $S_0 =$ \$10. No interest rates. What is the value of a bet that pays \$20 if the stock is worth more than \$9 after two years?