## Problem 1 (10 points)

A stock process starts at time 0 at 100 and then can go 30 up or 10 down for each time step. We consider two time steps, the risk-free interest rate is 10%. Consider a European call option with strike price of \$100.

- 1. Sketch the Stock process.
- 2. Find the option value at all nodes of the tree.
- 3. Assume that the stock first goes down and then goes up. Compute the necessary holdings  $(\phi, \psi)$  of stock and bond at each time step to hedge the above option.

## Problem 2 (10 points)

Consider the following stock process  $S_i$  at times i = 0, 1, 2, 3.



- 1. Find a measure  $\mathbb{Q}$  such that S becomes a  $\mathbb{Q}$ -martingale.
- 2. Find  $\mathbb{E}_{\mathbb{Q}}(X_2|\mathcal{F}_1)$  and  $\mathbb{E}_{\mathbb{Q}}(X_3|\mathcal{F}_1)$  for the filtration  $\mathcal{F}_1$  that corresponds to the node where  $S_1 = 10$  for the following processes X:
  - (a)  $X_i = 2S_i$
  - (b)  $X_i = S_i^2 S_i$

## Problem 3 (10 points)

Consider a stock process S on a tree. S starts at time i = 0 at  $S_0 = 77$  and it can go up or down 30% every year. The interest rate is 2%.

- 1. Sketch the stock process for two years.
- 2. Consider a European call option at a strike price of K = 88 and with an expiration date of two years. Find the value of the option at all nodes of the tree.
- 3. Consider now a stock process following the Black-Scholes model with a volatility of 30%. If all other parameters are the same as before in the discrete model, what will be the price of the option according to the Black-Scholes formula?