Binomial Tree - Summary

$$
\begin{aligned}
q & =\frac{\mathrm{e}^{r \delta t} s_{\text {now }}-s_{\text {down }}}{s_{\text {up }}-s_{\text {down }}} \\
f_{\text {now }} & =\mathrm{e}^{-r \delta t}\left(q f_{\text {up }}+(1-q) f_{\text {down }}\right) \\
V & =f(1)=\mathbb{E}_{\mathbb{Q}}\left(B_{T}^{-1} X\right)
\end{aligned}
$$

$$
\begin{aligned}
\phi & =\frac{f_{\text {up }}-f_{\text {down }}}{s_{\text {up }}-s_{\text {down }}} \\
\psi & =B_{\text {now }}^{-1}\left(f_{\text {now }}-\phi s_{\text {now }}\right)
\end{aligned}
$$

where
q : arbitrage probability of up-jump $\quad r$: interest rate in force over period
f : claim value time-process
s : stock price process
ϕ : stock holding strategy
B : bond price process, $B_{0}=1$
ψ : bond holding strategy
\mathbb{Q} : measure made up of the q s
V : claim value at time zero
X: claim payoff
δt : length of period
T : time of claim payoff

Black-Scholes formula - (European call option)

$$
\begin{aligned}
V & =\mathbb{E}_{\mathbb{Q}}\left[\left(S_{0} \exp \left(\sigma \sqrt{T} Z-\frac{\sigma^{2}}{2} T\right)-k \exp (-r T)\right)^{+}\right] \\
& =S_{0} \Phi\left(\frac{\log \left(S_{0} / k\right)+\left(r+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}\right)-k \mathrm{e}^{-r T} \Phi\left(\frac{\log \left(S_{0} / k\right)+\left(r-\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}\right)
\end{aligned}
$$

Itô's Lemma

If X is a stochastic process, satisfying

$$
d X_{t}=\sigma_{t} d W_{t}+\mu_{t} d t
$$

and f is a deterministic twice continuously differentiable function, then $Y_{t}=f\left(X_{t}\right)$ is also a stochastic process and is given by

$$
d Y_{t}=\left(\sigma_{t} f^{\prime}\left(X_{t}\right)\right) d W_{t}+\left(\mu_{t} f^{\prime}\left(X_{t}\right)+\frac{1}{2} \sigma_{t}^{2} f^{\prime \prime}\left(X_{t}\right)\right) d t
$$

