
Construction Strategies

The martingale representation theorem in the continuous world: Let’s for a
moment look again at the simple case of zero-interest rates. Remember that,
in the discrete world, the binomial representation theorem would allow us
to construct a self-financing hedging strategy to replicate our claim: First,
we construct a measure Q, such that the stock process S on the tree is a
Q-martingale. Then, in the second step, we convert the claim X into a
process E, using the conditional expectation operator Ei = EQ(X|Fi). At
each step, we have

∆Ei = φi∆Si, Ei = E0 +
i∑

k=1

φk∆Sk .

In other words, at time-tick i, we need φi+1 units of the stock S and, there-
fore, ψi+1 = Ei − φi+1Si units of the bond. At time zero, our portfolio has
the value φ1S0 +ψ1 = E0 = EQ(X) which is the money we need to create it
(the price of the derivative). And, trivially, at time k, our portfolio will have
the value Ek such that, at maturity, it replicates the claim. For the case
with interest rates, all we needed to do was to define the discounted stock
process Zi = B−1i Si and use this process Z to find the martingale measure
Q. And we would consider the discounted claim to define the process E via
Ei = EQ(B−1T X|Fi). The value of the claim X at time-tick i was then given
by

Vi = BiEi = BiEQ(B−1T X|Fi) . (1)

All these ideas carry over to the continuous world. Again, let us first write
down the continuous version of the martingale representation theorem:

Theorem. (Martingale representation theorem)
Given a Q-martingale M whose volatility is always non-zero and any other
Q-martingale N , there exists a previsible process φ such that N can be writ-
ten as

Nt = N0 +

∫ t

0
φs dMs

Using this theorem, we can proceed in the continuous world exactly in the
same way as in the discrete world: First, we find a measure Q, such that the
stock process St is a Q-martingale (again, we have r = 0). Then, convert
the claim X into a process via Et = EQ(X|Ft). Now, apply the martingale
representation theorem to construct a previsible process φt such that

dEt = φt dSt, Et = E0 +

∫ t

0
φsdSs
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Again, the hedging strategy will consist in holding φt units of the stock at
time t and ψt = Et − φtSt units of the bond, such that the value of the
portfolio at time t will be Vt = φtSt + ψt. What happens if we have an
interest rate r > 0? Similar to the discrete world, we need to consider now
the discounted stock process Zt = B−1t St and use this process to find the
martingale measure Q. This is exactly what was done as an example at the
end of the last section for the Black-Scholes model. The value of the claim
X at time t is then - compare to (1)

Vt = BtEt = BtEQ(B−1T X|Ft) . (2)

For the standard bond process Bt = B0e
rt we find

Vt = B0e
rtEQ(B−10 e−rTX|Ft) = e−r(T−t)EQ(X|Ft) (3)

The Black-Scholes Model

We already noted in the section introducing the change of measure as an
example how to derive the Black-Scholes formula using the Cameron-Martin-
Girsanov theorem.

V = e−rTEQ(X) = EQ

((
S0 eσW̃t−σ2t/2 −Ke−rT

)+)
= S0Φ

(
ln(S0/K) + (r + σ2/2)T

σ
√
T

)
−K e−rT Φ

(
ln(S0/K) + (r − σ2/2)T

σ
√
T

)
Clearly, (if the claim X, as always assumed only depends on the final value
of the stock ST ), for a time 0 < t < T , we can write the value Vt = V (St, t)
for s = St as

V (s, t) = e−r(T−t)EQ(X|St = s) (4)

and, concerning the trading strategy, the number of shares that one needs
to hold to hedge the claim at time t is given by φt = ∂V/∂s which is the
continuous version of φ = (fu − fd)/(su − sd) valid in the discrete world.
With a little bit of algebra, one can prove that

φt =
∂V

∂s
(St, T − t) = Φ

(
ln(S0/K) + (r + σ2/2)(T − t)

σ
√

(T − t)

)
(5)
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A partial differential equation for the option price: A second proof for the
formula φt = ∂V/∂s comes from the fact that the hedging strategy is self-
financing, meaning that we have

dVt = φtdSt + ψtdBt (6)

Under the martingale measure, the SDE for the stock process yields

dSt = σStdW̃t + rStdt (7)

and, for the bond process, we have as always dBt = rBtdt. Together, this
yields the following representation of dVt:

dVt = σStφtdW̃t + (rStφt + rψtBt) dt (8)

Now we can derive a second representation of dVt using Ito’s lemma:

dVt = dV (St, t) =

(
σSt

∂V

∂s

)
dW̃t +

(
rSt

∂V

∂s
+

1

2
σ2S2

t

∂2V

∂s2
+
∂V

∂t

)
dt (9)

Comparing the two expressions, we find

φt =
∂V

∂s
, rs

∂V

∂s
+

1

2
σ2s2

∂2V

∂s2
+
∂V

∂t
= rV (10)

The latter equation is a partial differential equation that can be solved (with
the appropriate final condition) in order to obtain the option price.
Proof of the hedging formula: We will now prove the hedging formula given
by (5). This is actually not more than an exercise in taking derivatives
correctly, but it is worthwhile as the result is important. First, we show
that Show that sΦ′(d1) = ke−r(T−t)Φ′(d2) when d1 and d2 are defined as

d1 =
log(s/k) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 =
log(s/k) + (r − σ2/2)(T − t)

σ
√
T − t

,

This part is pure algebra: Set T−t = τ , and we need to show that sΦ′(d1) =
ke−rτΦ′(d2), so we use the Gaussian density:

s exp

(
−1

2

(
ln(s/k) + (r + σ2/2)τ

σ
√
τ

)2
)

= ke−rτ exp

(
−1

2

(
ln(s/k) + (r − σ2/2)τ

σ
√
τ

)2
)
.

3



Using now exp(− ln(s/k)) = k/s, we see that this statement is equivalent to

− 1

2σ2τ

(
ln(s/k) + (r + σ2/2)τ

)2
= − ln(s/k)−rτ− 1

2σ2τ

(
ln(s/k) + (r − σ2/2)τ

)2
,

an expression that simplifies immediately when resolving the squares:

− 1

σ2τ
ln(s/k)(r + σ2/2)τ − 1

2σ2τ
(r + σ2/2)2τ2

= − ln(s/k)− rτ − 1

σ2τ
ln(s/k)(r − σ2/2)τ − 1

2σ2τ
(r − σ2/2)2τ2

and, looking at this expression twice, you’ll see that this is correct! Here is
why this is useful: Consider the value of a European option in the Black-
Scholes model at time t and set τ = T − t. Then we know that this value is
given by the Black-Scholes formula in the form

V (s, τ) = sΦ(d1(τ))− ke−rτΦ(d2(τ))

and the hedging is given by

∂V

∂s
= Φ(d1(τ)) + s · 1

sσ
√
τ

Φ′(d1(τ))− ke−rτ

sσ
√
τ

Φ′(d2(τ)) = Φ(d1(τ)) .

One more example: We conclude this section with another example of pricing
a different option using the Black-Scholes model: Consider a stock St =
S0e

σWt and assume σ = 0.2, S0 = $10 and that interest rates are zero. What
is the value of a bet that pays $20 if the stock is worth less than $8 after two
years? The starting point is to construct the risk-neutral measure Q such
that St becomes a martingale. We know that the drift can be eliminated
using the Girsanov theorem by constructing a measure Q such that dW̃t =
dWt +γdt with γ = σ/2, where W̃t is a Q-Brownian motion. In terms of W̃t

we have
St = S0 eσW̃t−σ2t/2 .

To price the claim, we need to compute

V = EQ(X) = 20 · PQ(ST < 8)

Here, we denote by PQ(ST < 8) the risk-neutral probability that the stock
price ST takes a value of less than $8. We can express this probability as

PQ(ST < 8) =

∫ zc

−∞

1√
2π

e−z
2/2 dz
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where the upper limit zc is given by

10 · eσ
√
Tzc−σ2T/2 = 8, zc =

ln(8/10) + σ2T/2

σ
√
T

.

Hence the price of the derivative results in

V = 20 · Φ
(

ln(8/10) + σ2T/2

σ
√
T

)
≈ 20 · Φ(−0.64751) ≈ 5.173
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