
Change of Measure (Cameron-Martin-Girsanov Theorem)

Radon-Nikodym derivative: Taking again our intuition from the discrete
world, we know that, in the context of option pricing, we need to price the
claim using the risk-neutral measure. If there are no interest rates, this
measure Q is constructed through the requirement that the stock process
St needs to be a Q-martingale. This will also work in the continuous world,
however, we will need a continuous model of the stock process in the first
place. For the Black-Scholes model, we start from

St = S0e
σWt+µt

with a P-Brownian motion Wt. In order to define a measure Q, such that St
becomes a Q-martingale, we need to know how a Brownian motion changes
when the measure changes. Or, in other words, we would like to express the
change of measure in terms of Brownian motions.

To prepare the change of measure in the continuous world, we go back
(only for a moment) to the discrete world. Consider the same tree with two
different measures P and Q.
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Figure 1: Binomial tree with measure P

In the following, we basically only need the rule that we have to multiply
probabilities on branches in order to compute the probability to get to a
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Figure 2: Binomial tree with measure Q

certain node. For instance, using the measure P, the probability π10 to get
to the node numbered node 10 is

π10 = p1 · p3 · p6

Under the measure Q, the probability to reach node 9 is in general different.
Let’s denote it by π̃10. Obviously, we have

π̃10 = q1 · q3 · q6

In this way, we can express probabilities for all nodes. For node 9, we find

π9 = p1 · p3 · (1− p6) + p1 · (1− p3) · p5 + (1− p1) · p2 · p5,
π̃9 = q1 · q3 · (1− q6) + q1 · (1− q3) · q5 + (1− q1) · q2 · q5 .

After these preparations, we are ready to think about the question under
which circumstances it is possible to express the measure Q in terms of the
measure P and vice versa. The (trivial) answer is to write simply for the
probability to reach node 9

π̃9 =
π̃9
π9
· π9,
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in order to go from measure P to the measure Q and, on the other hand,

π9 =
π9
π̃9
· π̃9 .

in order to go from measure Q to the measure P. First, we notice that the
likelihood ratio corresponds to a stochastic process. This process is called
Radon-Nikodym derivative and denoted by dQ/dP or dP/dQ. Clearly, for
the Radon-Nikodym derivative to be well-defined, we need to assume that
nodes of the tree that are accessible under the measure Q are also accessible
under the measure P. In other words: we need to avoid dividing by zero
when forming the likelihood ratios. The formal definition is given by the
equivalence of the two measures: The two measures are equivalent if for each
set A the statement Q(A) > 0 is equivalent to P(A) > 0. For the binomial
tree, this reduces to the statement that, nodes that are accessible under
one measure are also accessible under the other measure. By ’accessible’ we
mean simply that there is a non-zero probability to reach a node.

For equivalent measures, we can easily express the expectation value with
respect to one measure through the expectation value taken with respect to
the other measure. Consider a discrete random variable X, we find

EP(X) =
∑
i

xiπi =
∑
i

xi
πi
π̃i
π̃i = EQ

(
X
dP
dQ

)
(1)

For a normally distributed random variable, we can use this formula to
characterize the change of measure. This is due to the following basic fact:

Theorem. (Characterization of Gaussian variables)
The following two statements are equivalent:

1. A random variable X has a normal distribution N(µ, σ2) under a mea-
sure P

2. For all real θ, we have

EP

(
eθX
)

= eθµ+θ
2σ2/2

Let’s look at a simple, but very instructive example: In order to define a
suitable Radon-Nikodym derivative, a simple choice is to have dQ/dP > 0.
Let Wt be a P-Brownian motion (hence normally distributed with zero mean
and a variance t), a possible choice would be

dQ
dP

= e−γWt−γ2t/2 > 0 .
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Can we figure out what happens to Wt under the measure Q? If we are
lucky, W has still a normal distribution under the new measure (but maybe
with a different mean and/or variance). In this case, we should be able to
use the above theorem. Let’s try to compute

EQ

(
eθWt

)
= EP

(
dQ
dP

eθWt

)
= EP

(
e−γWt−γ2t/2eθWt

)
= e−γ

2t/2EP

(
e(θ−γ)Wt

)
= e−γ

2t/2e(θ−γ)
2t/2

= e−γθt+θ
2t/2

Applying the above theorem again, we see that W has, under the measure
Q, again a normal distribution with mean −γt and variance t. In summary,
we have shown that, for a P Brownian motion Wt, we can construct an
equivalent measure Q such that, under the new measure Q, the Brownian
motion Wt has a mean −γt and a drift t. In particular W̃t = Wt + γt is
actually a Q-Brownian motion, since the term γt is used to compensate for
the negative drift. This is a special case of the following theorem:

Theorem. (Cameron-Martin-Girsanov theorem)
For a P-Brownian motion Wt and a previsible process γt, satisfying the
condition

EP

(
exp

(
1

2

∫ T

0
γ2t dt

))
<∞

there exists a measure Q equivalent to P such that

W̃t = Wt +

∫ t

0
γs ds

is a Q-Brownian motion. The measures are related by the Radon-Nikodym
derivative given by

dQ
dP

= exp

(
−
∫ t

0
γs dWs −

1

2

∫ t

0
γ2s ds

)
.

In the context of derivative pricing, we can use the Cameron-Martin-Girsanov
theorem in order to construct a martingale measure. Consider for example
a stochastic process Xt = µt + σWt with a P-Brownian motion Wt. Now,
we can write

Xt = σ
(µ
σ
t+Wt

)
= σ(γt+Wt) = σW̃t

since the Cameron-Martin-Girsanov theorem guarantees the existence of
an equivalent measure Q and the corresponding Q-Brownian motion W̃t.
Clearly, Xt is not a P-martingale, but it is obviously a Q-martingale.
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Derivation of the Black-Scholes formula using the Girsanov theorem: We
can now derive again the Black-Scholes formula using the Cameron-Martin-
Girsanov theorem. The main step consists in considering the Black-Scholes
model with a stock and bond process given by

St = S0 eµt+σWt , Bt = B0e
rt

and forming the discounted stock process Zt = B−1
t St = S0 e(µ−r)t+σWt .

For a European claim X with maturity T , the initial price is given by V =
e−rTEQ(X), and Zt is a Q-martingale. Clearly, we want to use the Cameron-
Martin-Girsanov theorem to construct Q. Therefore, we use first Ito’s lemma
to find dZt:

dZt = Zt
(
(µ− r + σ2/2) dt+ σdWt

)
= σZt (γ dt+ dWt) , (2)

where we set γ = µ − r + σ2/2. Applying now the Cameron-Martin-
Girsanov theorem, we can construct the measure Q such that Zt becomes a
Q-martingale and W̃t = γt+Wt is a Q-Brownian motion. Clearly, we have
then Wt = W̃t−γt and we can use this in order to express the stock process
St in terms of W̃t:

St = S0 eµt+σWt = S0 eµt+σW̃t−(µ−r)t−σ2t/2 = S0 eσW̃t+(r−σ2/2)t (3)

For a European call, we have X = (ST −K)+, and thus the price of such a
call is computed as

V = e−rTEQ(X) = EQ

((
S0 eσW̃t−σ2t/2 −Ke−rT

)+)
(4)

which is exactly the Black-Scholes formula.
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