
Random Walks and Brownian Motion

Simple random walk: In the following, we develop a more systematic ap-
proach to formulate a continuum limit for stochastic processes. For this
purpose, imagine that we devide the interval [0, 1] into n steps and define a
random walk Wn at time steps t0 = 0, t1 = δt, t2 = 2δt, ... with δt = 1/n as
the process that

• starts at zero, hence Wn(0) = 0,

• can go up or down by 1/
√
n with a probability of 1/2 at each step
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Figure 1: Simple random walk

The scaling of the ’up-’ and ’down-’ jumps of 1/
√
n is essential for the

convergence of the process as we will see by the following argument: The
random walk Wn can be written as a sum of independent random variables
Xj , where each Xj takes the value -1 or 1 with probability 1/2, hence

Wn(kδt) =
1√
n

k∑
j=1

Xj (1)

Clearly, the mean of Wn is zero. The variance at k = n is computed as the
sum of the variances of the Xj as all Xj are independent. Therefore, we find

Var(Wn(1)) =
n∑
j=1

(
1√
n

)2

Var(Xj) = n · 1/n = 1 (2)
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Now we see that, due to the factor 1/
√
n, the variance of Wn(1) = 1 for

all n, hence we can expect convergence of Wn → Z with Z ∼ N(0, 1) by
applying the central limit theorem. Often, we also write

Wn((k + 1)δt) = Wn(kδt) + ∆W, ∆W = ± 1√
n

= ±
√
δt (3)

where ∆W is called the Brownian increment which can take the values
√
δt

and −
√
δt with probability 1/2.

Brownian motion: We can now take the continuum limit to see that the
random walk Wn converges to a continuous stochastic process W called
Brownian motion (with respect to the measure P. From the properties of
Wn we can see that

• W0 = 0

• Wt ∼ N(0, t)

• Wt −Ws ∼ N(0, t− s)

Moreover, due to the independence of the increments Xj , we know that all
Brownian increments are independent, in particular Wt−Ws is independent
of the history up to the time s.

Brownian Motion as a Martingale

In continuous time, we define a martingale in analogy to the discrete defi-
nition: A stochastic process Mt is a martingale with respect to a measure P
(or short P-martingale) if for all t > s

EP(Mt|Fs) = Ms (4)

It is easy to see that a P-Brownian motion is a P-martingale. Intuitively, this
is clear as the random walk Wn goes up and down with the same probability.
Using the above properties of Brownian motion, we can easily carry out a
formal proof (assuming t > s):

EP(Wt|Fs) = EP(Wt −Ws +Ws|Fs)
= EP(Wt −Ws|Fs) + EP(Ws|Fs)
= 0 +Ws = Ws

In the last step, we used the (trivial) fact that EP(Ws|Fs) = Ws and that
EP(Wt − Ws|Fs) = 0 since we know that Wt − Ws ∼ N(0, t − s). We
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can also use the properties of Brownian motion in order to carry out more
complicated calculations. Consider for example the stochastic process

Yt = W 2
t − t

and we can show that Yt is also a P-martingale in the following way: First
we show that

EP(W 2
t −W 2

s |Fs) = t− s (5)

Proof: By direct computation we have

EP(W 2
t −W 2

s |Fs) = EP((Wt −Ws)
2 + 2Ws(Wt −Ws)|Fs)

= EP((Wt −Ws)
2|Fs) + 2WsEP((Wt −Ws)|Fs)

= t− s .

Again, the last line follows directly from the fact that Wt−Ws ∼ N(0, t−s).
With the above relation (??) at hand, we find for the process Yt:

EP(W 2
t − t|Fs) = EP(W 2

t −W 2
s +W 2

s − t|Fs)
= t− s+W 2

s − t = W 2
s − s

which shows that Yt = W 2
t − t is indeed a martingale. This calculation,

however, shows as well that it will be useful to find more sophisticated tests
to see whether a process in continuous time is a martingale. We will see
that the so-called Ito’s Lemma (see below) offers for many processes a quick
way to test whether they satisfy the martingale property.

Stochastic Differential Equations

Consider the process defined by Xt = σtWt. In a discrete approximation,
we can compute the next value Xt+∆t by drawing a random number r which
is 1 or −1 with probability 1/2 and setting

Xt+∆t = Xt + σt r
√

∆t .

A different way of writing this relationship is to consider the differential by
writing

∆Xt = Xt+∆t −Xt = σt r
√

∆t = σt ∆W

with the Brownian increment ∆W . The continuous version of the above
equation is simply

dXt = σtdWt (6)
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and, in this form, the stochastic equation resembles a differential equation.
A (short) review of differential equations: Let’s, for a moment, put stochas-
ticity aside and consider a basic, deterministic differential equation of the
form

dBt
dt

= µt

Writing this in a discretized version, we can write

∆Bt = Bt+∆t −Bt = µt ∆t

The continuous version of the above equation is simply

dBt = µtdt

which is very similar to (??). However, the main difference is that ∆t is
deterministic, whereas ∆W is stochastic. Moreover, the size of ∆W is much
larger that ∆t as |∆W | =

√
∆t.

General form of a stochastic differential equation: It is convenient to com-
bine stochastic and deterministic contributions to the change of the stochas-
tic process Xt in differential form by writing

dXt = µtdt+ σtdWt (7)

Note that, as for ordinary differential equations the function µt and σt can
depend on Xt and on t, hence

µt = µ(Xt, t), σt = σ(Xt, t) .

As for deterministic differential equations, there are no general techniques
to solve any given stochastic differential equation. Many simple problems,
however, can be solved by applying Ito’s Lemma which we will discuss in
the next section.

Ito’s Lemma

Taylor expansion of the differential: Consider a stochastic differential equa-
tion in its general form

dXt = µtdt+ σtdWt

and consider a transformation of the form

Yt = f(Xt)
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with a smooth function f . We can calculate the differential equation for Yt
by considering the following Taylor expansion:

∆Y = f(Xt + ∆X)− f(Xt) = f ′(Xt)∆X +
1

2
f ′′(Xt)(∆X)2 + ...

= f ′(Xt)(µt∆t+ σt∆W ) +
1

2
f ′′(Xt)(µt∆t+ σt∆W )2 + ...

≈ f ′(Xt)(µt∆t+ σ∆W ) +
1

2
f ′′(Xt)σ

2
t (∆t)

The last approximation follows as (∆W )2 = ∆t and from the fact that we
consider terms up to the order ∆t. Remember that |∆W | =

√
∆t. Terms

like (∆W )∆t are of the order (∆t)3/2 and can be neglected. Therefore, we
have the following

Lemma. (Ito’s Lemma) Assume that a stochastic process Xt is the solution
of the stochastic differential equation

dXt = µtdt+ σtdWt .

Then, for a transformed process Yt = f(Xt) with a deterministic, twice
continuously differentiable function f , the process Yt satisfies the stochastic
differential equation given by

dYt = f ′(Xt) (µtdt+ σtdWt) +
1

2
σ2
t f
′′(Xt)dt

= f ′(Xt)σtdWt +

(
f ′(Xt)µt +

1

2
σ2
t f
′′(Xt)

)
dt .

Examples of the application of Ito’s lemma: We can consider Ito’s lemma as
a generalization of the deterministic chain rule. In the following we discuss
several examples and applications of Ito’s lemma.

• Consider the special case, where Xt = Wt and Yt = f(Wt). Then we
have µt = 0 and σt = 1 and we see that

dYt = f ′(Wt)dWt +
1

2
f ′′(Wt)dt .

• Applying the above formula, we find directly relationships like

d(W 2
t ) = 2WtdWt + dt

d(W 2
t − t) = 2WtdWt

d(W 3
t ) = 3W 2

t dWt + 3Wtdt

d(W 6
t ) = 6WtdWt + 15W 4

t dt
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In particular we see that the solution of the stochastic differential
equation dYt = 2YtdYt (together with the initial condition Y0 = 0) is
given by Yt = W 2

t − t.

• An important example is the application to f(x) = ex. Then, clearly,
f(x) = f ′(x) = f ′′(x). Let’s assume constant volatility σt = σ and
constant drift µt = µ and define

Yt = f(Xt) = eXt = eσWt+µt .

This process is called exponential Brownian motion and is of relevance
in the context of the Black-Scholes model. Applying Ito’s lemma, we
find that

dYt = f ′(Xt)dXt +
1

2
σ2f ′′(Xt)dt

= Yt

(
σdWt +

(
µ+

1

2
σ2

)
dt

)
.

In particular we see that for µ = −σ/2, hence for

Yt = eσWt−σ2t/2

we have
dYt = σYtdWt

• For two processes Xt and Yt satisfying the stochastic differential equa-
tions

dXt = µtdt+ σtdWt

dYt = νtdt+ ρtdWt

we have for the product Zt = XtYt

d(XtYt) = XtdYt + YtdXt + σtρtdt .

This generalizes the product rule to stochastic processes. The proof is
left as an exercise. Hint: use a two-dimensional Taylor expansion of
the function f(x, y) = xy.

Using Ito’s lemma to identify martingales: Aside from solving stochastic
differential equations, we can also use Ito’s lemma to identify martingales.
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To see why, let’s prove first the following (trivial) statement: Consider a
stochastic process Xt given by

Xt = σWt + µt

with constant volatility σ and constant drift µ. Then Xt is a martingale if,
and only if, the drift vanishes or µ = 0. The proof is basically a repetition of
the proof that Brownian motion is a martingale: Assume Xt is a martingale,
then we have (for any t > s)

EP(Xt|Fs) = Xs .

As Xs = σWs + µs, and using the fact that Wt is a P-martingale, we see
that

EP(Xt|Fs) = σEP(Wt|Fs) + µt = σWs + µt = Xs = σWs + µs

or µt = µs, hence µ = 0. The other direction is trivial. The important
interpretation of this statement is that, for arithmetic Brownian motion
σWt + µt, we need the drift to vanish in order for the process to be a
martingale. This statement is generalized by the following theorem:

Theorem. (Characterization of martingales) Assume that a stochastic pro-
cess Xt is the solution of the stochastic differential equation

dXt = µtdt+ σtdWt .

and that the (technical) condition E((
∫ T

0 σ2
sds)

1/2) < ∞ is satisfied. Then
Xt is a martingale if, and only if, Xt is driftless (hence µt = 0).

We will not give a formal proof of this theorem, but taking our intuition from
the discrete world, we know that a process on a finite tree is a martingale
if the process is a martingale on each branch. Therefore, for a time-tick ∆t,
we can consider

Xt+∆t = Xt + ∆X =

{
µt∆t+ σt

√
∆t

µt∆t− σt
√

∆t

where the probability for an ’up’-jump and an ’down’-jump are 1/2. There-
fore, we have

EP(Xt+∆t|Ft) = Xt + µt∆t = Xt

if Xt is a P-martingale. Hence µt = 0 for that time-tick. This local feature
of one ’branch’ translates to the entire tree, hence µt = 0 everywhere.
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Going back to one of the examples for Ito’s lemma discussed earlier, we
can now see immediately that the stochastic process Yt = W 2

t − t is a mar-
tingale as there is no drift present in dYt = 2WtdWt. On the other hand,
Yt = W 2

t is not a martingale since the stochastic differential equation is
dYt = 2WtdWt + dt with the drift term dt present. We actually already
obtained this result above directly from the properties of Brownian motion.
The calculation, however, was more tedious than a simple and direct appli-
cation of the above theorem in conjunction with Ito’s lemma.

In the context of stock models, referring to the exponential Brownian
motion we see that

Yt = Y0eσWt−σ2t/2

is a martingale as there is no drift term in the corresponding stochastic
differential equation

dYt = σYtdWt .

This already resembles the representation of the stock process in the mar-
tingale measure that we obtained earlier for the Black-Scholes model. The
precise meaning will become clear in the next section when we discuss the
change of measure and the Girsanov theorem.
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