
The Black-Scholes Model

We are now ready to transition to the continuous world. All we need to do is
to formulate a stochastic process at discrete time steps δt such that we will
be able to take a meaningful limit δt→ 0. We will see that this, ultimately,
will be made possible via the Central Limit Theorem and the transition of
the binomial distribution to the normal distribution. However, we only can
establish convergence, if we have the appropriate scaling of the ’up’- and
’down’-movements of the stock with δt. It will turn out that the following
scaling is appropriate: We will derive the famous Black-Scholes formula in

su = snow · eµδt+σ
√
δt

snow

sd = snow · eµδt−σ
√
δt

four steps:

1. Characterize a stock process on a tree with N steps, such that we can
take later the limit N →∞.

2. Compute the risk-neutral probability q using a Taylor expansion.

3. Use the Central Limit Theorem in order to write the option price as
an expectation with respect to a Gaussian probability density.

4. Rewrite the integral in terms of the cumulative normal distribution
function.

Characterization of the stock process: Consider such a process with many
time steps, such that N · δt = T , where T is the time of maturity of the
option. In this tree, with N time-ticks, each path corresponds to a possible
realization of the stock process. Let’s define a random variable XN that
counts the number of ’up’-jumps. Then, of course, we will have N − XN

’down’-jumps. The value at the end node of the tree for a path with XN

’up’-jumps and N −XN ’down’-jumps is given by

ST = S0 exp
(
Nδt · µ+ σ

√
δt(XN − (N −XN ))

)
= S0 exp

(
µT + σ

√
T

2XN −N√
N

)
(1)
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Note that, under the above assumptions, the value of the stock at the end
node only depends on the number of ’up’ and ’down’ movements, not on the
particular path that the stock took. Therefore the random variable XN is
sufficient to characterize all possible scenarios of the stock path.
Taylor expansion of the risk-neutral probability: As usual, we obtain the
risk-neutral probability using the basic formula

q =
snowerδt − sd
su − sd

=
erδt − eµδt−σ

√
δt

eµδt+σ
√
δt − eµδt−σ

√
δt

Now we make use of the fact that δt is small. The resulting approximation
for q is slightly tricky to compute as the terms above involve

√
δt, but we

already did this earlier and the final result of the computation is

q ≈ 1

2

(
1−
√
δt

(
µ+ σ2

2 − r
σ

))
. (2)

Application of the Central Limit Theorem: Let us write

ST = S0 eY , Y = µT + σ
√
T

(
2XN −N√

N

)
(3)

Clearly, XN has a binomial distribution and, therefore, under the measure
Q we have

EQ(XN ) = E(XN ) = Nq, Var(XN ) = Nq(1− q) (4)

We compute now the expectation and the variance of Y . First, we see that

E
(

2XN −N√
N

)
=

2Nq −N√
N

= −
√
δt√
N

(
µ− r + σ2/2

σ

)
·N

= −
√
T

(
µ− r + σ2/2

σ

)
Therefore, for the expectation of Y (under the measure Q), we find

E(Y ) = µT − σ
√
T
√
T

(
µ− r + σ2/2

σ

)
= (r − σ2/2)T
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The variance, on the other hand, is slightly easier to compute in this ap-
proximation as we need to take into account only the leading order term
(q ≈ 1/2). Thus we find

Var

(
2XN −N√

N

)
≈ N · 1

2

(
1− 1

2

)
· 4

N
= 1 . (5)

For the variance of Y we obtain

Var(Y ) = σ2T . (6)

Therefore, as the time to maturity T is fixed, we can now take the limit
N → ∞ corresponding to δt → 0. In this limit, the binomial distribution
tends to a normal distribution and we can write ST therefore as

ST ≈ S0 e(r−σ
2/2)T+σ

√
TZ , Z ∼ N(0, 1) . (7)

We are now ready to write the option price as an expectation value: For
a European call option X = (ST −K)+ the expectation of the discounted
claim is written as

V = E
(
e−rTX

)
= E

(
(e−rTST −Ke−rT )+

)
= E

(
(S0 eσ

√
TZ−σ2T/2 −Ke−rT )+

)
Rewriting the integral using the cumulative normal distribution: The above
expectation value can be rewritten by using the cumulative normal distri-
bution Φ defined as

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2 dy . (8)

Theorem. (Black-Scholes Option Pricing) The price V of a European call
option with strike price K is given by

V = E
(

(S0 eσ
√
TZ−σ2T/2 −Ke−rT )+

)
= S0Φ(d1)−K e−rT Φ(d2) (9)

with

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

, d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

. (10)
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Proof. In order to compute the above integral, let’s first write

V =

∫ ∞
−∞

p(z)
(
S0 eσ

√
Tz−σ2T/2 −Ke−rT

)+
dz , p(z) =

1√
2π

e−z
2/2 .

Now we note that(
S0 eσ

√
Tz−σ2T/2 −Ke−rT

)+
= max

(
S0 eσ

√
Tz−σ2T/2 −Ke−rT , 0

)
.

For values of z that are negative and large in absolute value, the contribution
will be zero as the first term will be negative. However, as z increases, we
see, that there is a ’critical’ z = zc such that for z > zc, there will be non-zero
contributions to the integral. This zc is determined by the equation

S0 eσ
√
Tzc−σ2T/2 = Ke−rT (11)

Solving this equation for zc yields after a couple of lines of algebra

zc =
ln(K/S0) + (σ2/2− r)T

σ
√
T

. (12)

This allows us to rewrite the integral for the option price V by

V = S0

∫ ∞
zc

eσ
√
Tz−σ2T/2p(z) dz −Ke−rT

∫ ∞
zc

p(z)dz (13)

For the second integral, we find immediately (z̃ = −z)∫ ∞
zc

p(z)dz =

∫ −zc
−∞

p(z̃)dz̃ = Φ(−zc)

= Φ

(
ln(S0/K) + (r − σ2/2)T

σ
√
T

)
= Φ(d2)

The first integral is left as an exercise.
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Review of the Taylor expansion

Basic Taylor expansions: A fundamental idea of calculus consists in approx-
imating a function - locally in the neighborhood of the point (x0, f(x0)) - if
at all possible, through its tangent:

f(x) ≈ f(x0) + f ′(x0)(x− x0) .

What if we wanted to use a higher-order polynomial, say a quadratic function
to improve (locally) this approximation? How would we find the coefficients
c0, c1, c2 in

f(x) ≈ c0 + c1(x− x0) + c2(x− x0)2

Extending the basic idea of the tangent line, we would try to match higher
derivatives (here the second derivative) at x0. Computing the first two
derivatives, we find

f(x) ≈ c0 + c1(x− x0) + c2(x− x0)2

f ′(x) ≈ c1 + 2c2(x− x0)
f ′′(x) ≈ 2c2

and evaluating these approximations at x0, we find the following equations
for the coefficients:

f(x0) = c0, f ′(x0) = c1, f ′′(x0) = 2c2 .

Here, the first two coefficients reproduce the tangent-line approximation,
and the following (new) coefficient c2 for a parabolic approximation is given
by

c2 =
1

2
f ′′(x0) .

We can extend this idea easily to a polynomial of degree n. Assume that we
would like an approximation of the form

f(x) ≈
n∑
k=0

ck(x− x0)k . (14)

As before, we can compute derivatives in order to match them at x0. We
have

f(x) ≈ c0 + c1(x− x0) + c2(x− x0)2 + ...+ cn(x− x0)n ,
f ′(x) ≈ c1 + 2c2(x− x0) + 3c3(x− x0)2 + ...+ ncn(x− x0)n−1 ,
f ′′(x) ≈ 2c2 + 3 · 2c3(x− x0) + 4 · 3c4(x− x0)2 + ...+ n(n− 1)cn(x− x0)n−2 .
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From here we find immediately the formula for the k-th coefficient ck:

ck =
1

k!
f (k)(x0) , (15)

and the n-th order Taylor polynomial approximating the function f is there-
fore given as

f(x) ≈ Tn(x) =
n∑
k=0

1

k!
f (k)(x0)(x− x0)k . (16)

Note that, if the corresponding Taylor series converges, we have

f(x) =

∞∑
k=0

1

k!
f (k)(x0)(x− x0)k . (17)

A few examples: Consider x0 = 0 as the expansion point.

1. f(x) = ex. Here f (k)(0) = 1. Therefore, we find directly

ex =

∞∑
k=0

1

k!
xk

2. f(x) = cos(x). Now f(0) = 1, f ′(0) = 0, f ′′(0) = −1, ... Thus we have
even terms and alternating signs:

cos(x) =

∞∑
k=0

1

(2k)!
(−1)kx2k .

3. f(x) = sin(x). Now f(0) = 0, f ′(0) = 1, f ′′(0) = 0, ... Thus we have
odd terms and alternating signs:

sin(x) =
∞∑
k=0

1

(2k + 1)!
(−1)kx2k+1 .

It is noteworthy that we can derive from the above Euler’s formula:

eix = cos(x) + i sin(x) (18)

We can use the Taylor polynomial to find approximations for small argu-
ments. Consider ε � 1. Then clearly ε � ε2 � ε3 � ..... Therefore,
writing

eε ≈ 1 + ε+
1

2
ε2 +

1

6
ε3 + ... (19)
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we find that the terms involving high powers of ε are less important than
the small powers of ε. Sometimes, we refer to terms for O(εk) to collect all
terms that involve the k-th power of ε. For reasons that will become clear
later, when manipulating stochastic equations, we will have to deal with
expansions that involve

√
ε = ε1/2. This makes the bookkeeping a little

tricky. Note that, for ε < 1 we have
√
ε > ε, and this inequality becomes

more and more ’dramatic’ as ε approaches zero.
Let’s practice the use of these expansions using an example that we will

need later in our first derivation of the Black-Scholes formula. First, write

erε ≈ 1 + rε+
1

2
r2ε2 + ... (20)

Here, we have written all relevant terms including terms of order O(ε2).
Expanding a different term eσ

√
ε we see that we need many more terms

before we arrive at O(ε2):

eσ
√
ε = 1 + σ

√
ε+

1

2
σ2ε+

1

3!
σ3ε3/2 +

1

4!
σ4ε2 + ... (21)

In a similar way we can expand a term e−σ
√
ε, realizing that the sign only

affects odd powers:

e−σ
√
ε = 1− σ

√
ε+

1

2
σ2ε− 1

3!
σ3ε3/2 +

1

4!
σ4ε2 + ... (22)

Most of the time, we are interested in the terms up O(ε), but if what we are
expanding involves terms of

√
ε, we usually have to use a 2nd-order Taylor

expansion. In this context, this seems a rather trivial observation, but we
will see later that this is the key to stochastic calculus. We are now ready to
derive a result that we need later: First observe that, up to O(ε), we have

eσ
√
ε − e−σ

√
ε ≈ 2σ

√
ε (23)

The precise expansion that we will need later is the following:

erε − eµε−σ
√
ε

eµε+σ
√
ε − eµε−σ

√
ε

=
e(r−µ)ε − e−σ

√
ε

eσ
√
ε − e−σ

√
ε

≈
1 + (r − µ)ε− (1− σ

√
ε+ σ2

2 ε)

2σ
√
ε

=

(
r − µ− σ2

2

)
ε+ σ

√
ε

2σ
√
ε

=
1

2

(
1−
√
ε

(
µ+ σ2

2 − r
σ

))
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Note that, although we kept at the beginning terms up to O(ε), due to
cancellations, our approximation is only correct up to O(

√
ε), but it turns

out that (in the case where will apply this expansion) this is, fortunately,
sufficient.
Taylor expansions in two dimensions: It is easy to extend the idea of a
Taylor expansion to higher dimensions. In two dimensions, we find as an
expansion in the neighborhood of a point (x0, y0):

f(x, y) ≈ f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0)

+
1

2

∂2f

∂x2
(x− x0)2 +

∂2f

∂x∂y
(x− x0)(y − y0) +

1

2

∂2f

∂y2
(y − y0)2 ,

where all derivatives are evaluated at the point (x0, y0). Therefore, for small
deviations from (x0, y0) we can write

f(x0 + ε, y0 + δ) ≈ f(x0, y0) +
∂f

∂x
ε+

∂f

∂y
δ

+
1

2

∂2f

∂x2
ε2 +

∂2f

∂x∂y
εδ +

1

2

∂2f

∂y2
δ2 ,

If the argument involves roots, we proceed as before. Consider for example
f(x, y) = xy. Then we find immediately

f(x0 +
√
ε, y0 +

√
δ) ≈ f(x0, y0) + y0

√
ε+ x0

√
δ +
√
ε
√
δ (24)
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