
Review: Discrete probability distributions

Basic setup of a random experiment:

1. Sample space: Ω, consists of all elementary outcomes.

2. Set of all events G, which consists of all subsets of Ω.

3. Probability measure: P : G → [0, 1] which assigns a probability to
each event.

Axioms of Probability:

1. P (A) ≥ 0 for all A ∈ G, P (Ω) = 1.

2. If A and B are disjoint events, then P (A ∪B) = P (A) + P (B).

Important properties:

P (Ā) = P (Ω−A) = 1− P (A), (1)

P (∅) = 0, (2)

P (A ∪B) = P (A) + P (B)− P (A ∩B) . (3)

Examples:

1. Roll a die once. Here, Ω = {1, 2, 3, 4, 5, 6}. Each elementary outcome
is equally likely, hence P ({1}) = 1/6, P ({2}) = 1/6, etc. We can use
this to compute the probabilities of events that are not elementary:

P ({1, 3, 5}) = P ({1}) + P ({3}) + P ({5}) =
1

2
.

2. Roll two dice once. We can represent the sample space in the following
form:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Clearly, we have 62 = 36 possible outcomes which are equally likely.
Hence the probability of each elementary outcome is 1/36.

1



Random variables: A random variable X is a real-valued function on the
sample space Ω. If the range of X is finite or countable, X is called discrete,
otherwise X is called continuous.
For a discrete random variable X with the range {x1, x2, ..., xn}, the ex-
pectation E(X) of X (often denoted as µX), the variance Var(X), and the
standard deviation σX are defined as follows:

µX ≡ E(X) =
n∑
k=1

xk pk , (4)

Var(X) = E
(
(X − µX)2

)
=

n∑
k=1

(xk − µX)2 pk , (5)

σX =
√

Var(X) . (6)

Here, pk = P (X = xk) is the probability that the random variable takes
the value xk. In order to compute this probability, we need to find the set
A ∈ G that is mapped by X onto xk, or

pk = P (X = xk) = P (A), A = X−1(xk) . (7)

Note, that as P (Ω) = 1, we have obviously

n∑
k=1

pk = 1 . (8)

From the definition of the expectation and the variance, we find directly
that, for constants a and b we have

E(aX + b) = aE(X) + b, Var(aX + b) = a2Var(X) . (9)

The proof is left as an exercise. Note that the variance is a quadratic quan-
tity, therefore its scaling factor a2 and not a. Moreover, the variance is
insensitive to shifts, hence b does not enter on the right-hand side of the
second equation.
For the variance, we have the following alternative formula:

Var(X) = E(X2)− µ2. (10)

Proof: We can see this by direct calculation. Set µ = E(X). Then

Var(X) = E
(
X2 − 2µX + µ2

)
= E

(
X2
)
− 2µE(X) + E(µ2)

= E
(
X2
)
− 2µ2 + µ2

= E(X2)− µ2.
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Examples:

1. Consider again the random experiment of rolling a die once. If we
define the random variable X as the number of points of the die,
we have xk = k for k = 1, 2, ..., 6. Each pk = 1/6 and we find the
µX = 7/2. Calculation:

µX =

n∑
k=1

xkpk =
1

6
(1 + 2 + ...+ 6) =

7

2

2. Consider now a second random experiment of rolling two dice once. If
we define the random variable X as the sum of the points, the range of
X consists of the number from 2 to 12. Now it is (slightly) harder to
find the corresponding pk, but if we rewrite the matrix of elementary
outcomes again (look at the ascending diagonals)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

we find easily

P (X = 2) = P ((1, 1)) =
1

36
,

P (X = 3) = P ((2, 1)) + P ((1, 2)) =
2

36
.

Probability distributions: From the above examples, it is clear that the func-
tion xk → pk captures the essence of the random experiment. In the first
case, we have pk = 1/6 for all xk, hence the distribution is uniform, its graph
is flat (see Figure 1).

In the second case, pk increases with k until it reaches its maximum at
xk = 7 and then it decreases. Here, the graph is a triangle, see Figure 2.
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Figure 1: Probability distribution for one die.
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Figure 2: Probability distribution for two dice.

Binomial distribution: Consider a random experiment that consists of n
independent trials such that

1. each trial has only two outcomes S (success) or F (failure).

2. the probabilities for success p = P (S) and q = P (F) = 1 − p are the
same for all trials.

3. the random variable X counts the number of successes in the n trials

Consider, for example n = 2, and p = q = 1/2. The possible outcomes of
the experiment are {SS, SF, FS, FF}. The range of X is {0, 1, 2} and we
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find the following probability distribution:

P (X = 0) = P (FF ) =
1

4
,

P (X = 1) = P (FS) + P (SF ) =
1

2
,

P (X = 2) = P (SS) =
1

4
.

We can represent this experiment in a tree diagram:

SS

S

Start SF, FS

F

FF

p

q

p

q

p

q

In the general case, the range of X is {0, 1, 2, ..., n}. The probability of
obtaining k successes during the n trials, can be computed as

P (X = k) =

(
n

k

)
pkqn−k . (11)

Here,
(
n
k

)
is the binomial coefficient, sometimes written as nCk. Hence the

binomial distribution is characterized by the two parameters n and p and
we write X ∼ B(n, p).

Proof: Consider the probability of the particular event A that represents
the sequence of obtaining first k successes followed by n− k failures:

A = S...S︸ ︷︷ ︸
k

F...F︸ ︷︷ ︸
n−k

.

Since the probabilities on the branches of the tree multiply due to indepen-
dence, the probability of this sequence is given by

P ({S...SF...F}) = pk qn−k .

Since the random variable X only counts the number of successes, the order
in which the successes appear in the sequence is irrelevant: All events with
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exactly k successes contribute to the total probability P (X = k) and there
are exactly

(
n
k

)
such events.

We will later need formulas for the expectation (mean) of X and its variance.
For the binomial distribution we have

E(X) = np, σ2X = npq . (12)

Proof: First remember that, for the sum of two random variables X1 and
X2 we have

E(X1 +X2) = E(X1) + E(X2) , (13)

hence for a sum of n random variables we have

E

(
n∑
k=1

Xk

)
=

n∑
k=1

E(Xk) . (14)

We can represent the binomial random variable X as a sum of Bernoulli
random variables

X =
n∑
k=1

Xk ,

where each Xk takes the value 1 in case of success, otherwise the value 0.
Clearly, the expected value of Xk is

E(Xk) = p · 1 + q · 0 = p

and, therefore, we have E(X) = np. In order to prove the statement about
the variance, remember that, for independent random variables, the vari-
ances add up:

Var

(
n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk) . (15)

The variance of each Xk can be computed directly:

Var(Xk) = E(X2
k)− µ2k = p− p2 = p(1− p) = pq ,

which yields Var(X) = npq.
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Review: Continuous probability distributions

In the following we consider a continuous random variable X with a prob-
ability density function p(x) on R. One way to think of the probability
density function is that the probability that X takes a value in the interval
[x, x+ dx) is given by

P (x ≤ X < x+ dx) = p(x) dx .

For continuous probability distributions, the sums in the formulas above
become integrals. For instance we have

1 =

∫
R
p(x) dx , (16)

µX = E(X) =

∫
R
x p(x) dx , (17)

σ2X = Var(X) =

∫
R

(x− µX)2 p(x) dx . (18)

We also define the cumulative distribution given by FX(x) = P (X < x) that
can be written as

FX(x) = P (X < x) =

∫ x

−∞
p(t) dt . (19)

Normal distribution: If the random variable X has the probability density
p given by

p(x) =
1√
2πσ

e−(x−µ)
2/(2σ2) (20)

we say that X has a normal distribution with mean µ and standard deviation
σ, or X ∼ N(µ, σ2).

We can show by direct calculation that indeed

1 =

∫
R
p(x) dx , (21)

µ = E(X) =

∫
R
x p(x) dx , (22)

σ2 = Var(X) =

∫
R

(x− µ)2 p(x) dx . (23)

For the proof, we need the following basic calculus result:

J =

∫
R

e−ax
2
dx =

√
π

a
(24)
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Figure 3: Standard normal distribution with µ = 1, σ = 1.

Proof of this result: Consider a = 1 and instead of J the square J2. Then
transform to polar coordinates:

J2 =

(∫
R

e−x
2
dx

)(∫
R

e−y
2
dy

)
=

∫
R2

e−(x
2+y2) dx dy =

∫ ∞
0

∫ 2π

0
e−r

2
r dφ dr

= π

∫ ∞
0

2r e−r
2
dr = π .

We can now proceed to prove the equations (21), (22), (23). First, we see
immediately that∫

R
p(x) dx =

1√
2πσ

∫
R

e−(x−µ)
2/(2σ2) dx =

1√
2πσ

√
2σ2π = 1 .

In order to show (22), we first write∫
R
x p(x) dx =

∫
R

(x− µ+ µ) p(x) dx

= µ+
1√
2πσ

∫
R

(x− µ) e−(x−µ)
2/(2σ2) dx .

Due to symmetry (substitute x̃ = x− µ) the last integral is zero:∫
R

(x− µ) e−(x−µ)
2/(2σ2) dx =

∫
R
x̃ e−x̃

2/(2σ2) dx̃ = 0 .
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For the last property (23), we need one more integral:∫
R
x2 e−ax

2
dx =

1

2a

√
π

a
. (25)

This result also follows directly from what we already know: Use the basic
integral (24) to define a function J(a) as

J(a) =

∫
R

e−ax
2
dx =

√
π

a

and compute J ′(a) in two different ways. First, differentiate under the
integral and then use the right-hand side of the above equation

J ′(a) = −
∫
R
x2 e−ax

2
dx =

d

da

(√
π

a

)
= − 1

2a

√
π

a
.

Now we can find (23) by direct computation:∫
R

(x− µ)2 p(x) dx =
1√
2πσ

∫
R

(x− µ)2 e−(x−µ)
2/(2σ2) dx

=
1√
2πσ

∫
R
x̃2 e−x̃

2/(2σ2) dx̃

=
1√
2πσ

2σ2

2

√
2σ2π = σ2

Central limit theorem: The mean of a sufficiently large number of iterates of
independent random variables, with a well-defined expected value and a well-
defined variance, will be approximately normally distributed. In particular,
for large n, the binomial distribution B(n, p) becomes approximately normal
with N(np, npq).
Moment-generating function: For a random variable X, the moment-genera-
ting function MX is defined as

MX(s) = E
(
esX
)
. (26)

Clearly, we have MX(0) = 1. More interestingly, we find that, if we know
MX , we can compute the mean (and in fact all higher moments) of the
random variable X by differentiation. For the mean, this relationship is
given by

µX = E(X) = M ′X(0) . (27)
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Proof: From the definition of the moment-generating function, we can use
the density p of X to write

M ′X(s) =

∫
R
xesxp(x) dx

If we evaluate this relationship at s = 0 we find immediately

M ′X(0) =

∫
R
xp(x) dx = E(X)

As an example of how to compute the moment-generating function in a
concrete case, take a random variable Z ∼ N(0, 1). We find by direct
calculation:

MZ(s) =
1√
2π

∫
R

esx−x
2/2 dx

=
1√
2π

∫
R

e−
1
2
(x2−2xs) dx

=
1√
2π

∫
R

e−
1
2
(x2−2xs+s2−s2) dx

= es
2/2 1√

2π

∫
R

e−
1
2
(x−s)2 dx = es

2/2

The trick of ’completing the square’ used in the third line of the above
calculation is very useful in the context of Gaussian integrals.

Simulating random numbers

In MATLAB, we can generate normally distributed random numbers (e.g.
with a standard normal distribution) Z ∼ N(0, 1) using the command
randn(). For instance, the command r=randn(1,1000) creates a row vec-
tor of 1000 random numbers. In order to create histograms, one can use
the command hist(). The following series of commands compares the his-
togram of the randomly generated numbers with the theoretical distribution.

>> [x,ps] = creategauss(10000);

>> plot(x,ps,x,1/sqrt(2*pi)*exp(-x.^2/2))

Here, the function creategauss() creates an approximation of the theoret-
ical probability density by a sample of random numbers:
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Figure 4: Standard normal distribution from 10000 samples.

function [x,ps] = creategauss(n)

% creategauss.m Sampling of a standard normal distribution

% [x,ps] = creategauss(n);

% plot(x,ps,x, 1/sqrt(2*pi)*exp(-x.^2/2))

x = [-10:0.1:10]; % create x range

dx = x(2)-x(1); % here 0.1, of course

r = randn(1,n); % draw n random numbers

ps = hist(r,x); % create histogram, centers given by x

ps = ps/sum(ps)*1/dx; % normalize

end
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