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Abstract

We study large deviations for intersection local times of p inde-
pendent d-dimensional symmetric stable processes of index 3, under
the condition p(d — ) < d. Our approach is based on Feynman-
Kac type large deviations, moment computations and some techniques
from probability in Banach spaces.

1 Introduction

Let X () be a non-degenerate d-dimensional stable processes of index 3. We

assume that X (¢) is symmetric, i.e. X(£) < —X(¢), but we do not assume it

is spherically symmetric. Thus
(1.1) E (eiA‘X@)) — o)

where 1(A) > 0 is continuous, positively homogeneous of degree [, i.e.
P(rX) = rPy(N) for each r > 0, 1(—\) = ¢»(A\) and for some 0 < ¢ < C' < o0

(1.2) AP < (X)) < CIAP.
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Let Xi(t),---, X,(t) be independent copies of X (¢). Their ranges will have
a point in common aside from the initial point if and only if p(d — ) < d,

see [13]. When p(d — ) < d there is a random measure a,(dsy,---,ds,)
supported on
(1.3) {(tn 1) € (RY Xa(h) =+ = X,(8,) -

a,(dsy, -+, ds,) is called the intersection local time of X;(¢),-- -, X, (). For-
mally it can be written as

(1.4) ay(dsy,---,ds,) = [/Rd H do(X;(s5) —x)dx} dsy---ds,

where d(z) is the Dirac delta-‘function’ at 0.

In the case d = 1 and 3 > 1, the intersection local time can be represented
in terms of the spatial L?(R') norms of the local times L} of the symmetric
stable processes. In this case the large deviations and law of the iterated
logarithm have been established for «(-) in recent work [4] for the Brownian
motion and [5] for the symmetric stable processes.

When d =1 and 8 < 1, or when d > 1 for all § local times do not exist
and we define the intersection local time «(dsy, - - -, ds,) as a limit. Let h be
a positive symmetric function in the Schwartz space S(R?) with [ hdx = 1.
Given € > 0, let h.(z) = ¢ %h(z/¢), and define the random measure o, (-)

n (RP)" by

(1.5) ac(dsy, -, dsy) = {/R'i H he(X;(s;) — x)dx|dsy - - - ds,.

It can be shown that if p(d — ) < d the limit

(1.6) 0y(B) = lim a,.(B)

exists a.s and in all L™-norms for any m > 1 and for any Borel set B C
(RP)" and is a measure supported on (1.3). We set a,+ = a,([0,t]7), apre =
a,.¢([0,t]?). For the convienience of the reader we show in Theorem 9 that
a.s. Qpy = lim. o+ o exists and is continuous in ¢. Using the scaling
property {X (ts): s > 0} £ t/#{X(s): s > 0} of the stable process it is easy
to check that

(1.7) = PN By,



We note that in the case § > d, where local times exist, we can also
consider the analogue of (1.4) where we use a single process rather than p
independent processes. Once again this is dealt with in [5]. However, in the
case 3 < d considered in this paper, where local times do not exist, if in (1.5)
we use a single process rather than p independent processes, the limit blows
up. To get a non-trivial limit we must ‘renormalize’. Large deviations for
the resulting limit in the case p = 2 are discussed in [2].

To describe our results we need some further notation. For any function
f € L*(RY) set

(18) Euf )= @m) ™ [ wIFI dA

~

where f()) denotes the Fourier transform of f. £,(f, f) is the Dirichlet form
of {X(t);t>0}. Let

(19 Fo={f € LEY|Iflla = 1. Eulf.f) < oo
and U
(110) Moy = {{( [ @) T - utr. )}

In the next section we show that My, < oo when p(d — ) < d and that
M, , can be expressed in terms of the best possible constant in a Gagliardo-
Nirenberg type inequality.

We can now present our theorem desrcribing the exponential asymptotics
and large deviations for a, ;.

Theorem 1 Assume that p(d — 3) < d. Then for any A >0

1.11 lim ¢~ log E( %) = Am=4G=1 p~ 5-10-D M,
. g p Y,p

Equivalently for any h > 0

(1.12) lim ¢ log P,/ > ht} = —w?1r 04,

where p . p 1) So=dp=)

(1.13) Ayp = (p— )(ﬁp— (p— ))W

5} ﬁpr,p



Using the scaling (1.7) our Theorem is equivalent to the fact that for any
h >0
(1.14) Jim ¢~ log P{apy""™ > ht} = —hA,,.
Thus
(1.15)

-1

Nafdr—h | <00 ifA< Ay
B(e™» ){ —oo A AL

We next desrcribe the law of the iterated logarithm for a;.

Theorem 2 Assume that p(d — 3) < d. Then

(1.16)  limsupt= P~ C=D4/B) (loglogt)~P~D/8q,, , = A;(p_l)d/ﬁ a.s.
t—o00

For the case of Brownian motion, i.e. § = 2, these results were obtained
by the first author in [3]. The methods of that paper depended heavily on the
continuity of the Brownian path and the fact that the generator of Brownian
motion, the Laplacian, is a local operator. In the course of overcoming the
various problems associated with the stable process we have developed a new
approach which greatly simplifies the proofs even for the case of Brownian
motion.

We have also developed analogous results for random walks. Thus, con-
sider Si(n),---,Sp(n) independent copies of a d-dimensional symmetric ran-
dom walk S(n). We will assume that our random walks are in the domain of
attraction of our nondegenerate symmetric stable process X (¢) of index [,
ie.

(1.17) — . X(1)

with b(z) a function of regular variaton of index 1/3. Set

> ﬁ5(Sj(nj),x)

FIYANESS

n

(1.18) Iy, = Z

n1,...,nEp=0

where

1 ifa=y
(1.19) 0y, ) = { 0 otherwise

is the usual Kroenecker delta.
Let {v,} represents a positive sequence satisfying

(1.20) v, — oo and v,/n— 0.
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Here is our analogue of Theorem 1 desrcribing the exponential asymptotics
and moderate deviations for I,,,,.

Theorem 3 For any A >0

1 n d(p—1) pB __dp=1)
(1.21) lim — log E exp {)\%b(m/;l) - I;’{f} = A\pF—de=Dp P -dtp-T) My,

n—oo

and for any h > 0

1 _8_
(1.22) Jim. o log P{I, > hnPb(ny,')~4¢-1} = —hd(pﬁfl)Aw’p.

This gives rise to the following LIL for I,,.

Theorem 4

d(p—
(1.23) limsupn’pb( - ) v

I, = A*(Pfl)d/ﬂ 5
n—o0 loglogn P vp @5

2 Sobolev inequalities and Feynman-Kac for-
mulae

Lemma 1 Ifp > 1 and 8 > d(p — 1)/p then F, C L*(R%), and for any
>0

(2.1) 1£12, < CslIfII2 + 0Eu (£ f)
for some Cs < co. In particular for any A > 0

22) Mip(X) = sup (AIFIB, = Eulf. 1)) < oo.
fe€Fs

Proof of Lemma 1: When ¢()\) = |\|® we write Fg, Eg, M p.q for Fy, Ey, My -
Because of (1.2) we have £, < C&s hence it suffices to prove (2.1) when
¥(\) = |A]°. By the Hausdorff-Young inequality

(2.3) 1 ll2p < 11 ll2p/2p-1)



where f denotes the Fourier transform of f. We also have that for any r > 0

(2.4) 11152

2p/(2p—1

(4 PPy
) /R‘i (r 4 [A|B)P/(2p=1) |FO) |22/ gy

< ||+ AP 1y oy
[(r + |AP)P/ =) FON 2P/ D] 1)

Now
(25)  [[(r + AP CPD F )PP | o Hﬁ =7 fl3+Es(f, f)

and

. By=p/(20=1) || 2p=1)/(p-1) _ 1
(2'6) Cr = ||(T+ |/\| ) s ||(2p—1)/(p—1) - /Rd (T+ |)\|ﬁ)p/(p_1) dX

which is finite if 5 > d(p—1)/p, in which case we also have that lim,_,, ¢, = 0.
Summarizing,

(2.7) If15, < 9P (Pl £115 + Es(f f)) -

This gives (2.1) on taking r sufficiently large. This completes the proof of
our Lemma.

Set MTZJ,P = Mw’p(l).
Lemma 2 Ifp>1and 3> d(p—1)/p then
(28)  hyp = i {C |[Ifllap < C I "L (f, )10 < 0o

and

d(p — 1)k2 PP/ Ph—d(p—1))
29) My, ="0 40— ( (p MW) .
d(p—1) pB
For any A >0
(2.10) My, (\) = )\pﬁ/(pﬁ—d(p—l))vap_

Proof of Lemma 2: To see that (2.8) is finite, note that if we set f(x)

s¥2g(s), then || fll2 = l|gll2, /13, = s*®=D77||g3, and £4(f, f) = 5"y (g
so that from (2.1) we obtain

(2.11) lgll3, < C (llgl3 + s°€s(g, g)) s~ w077

and the fact that (2.8) is finite follows on taking s’ = ||g||3/€s(g,9). The
same scaling establishes (2.10). Finally, (2.9) follows as in the proof of Lemma
8.2 of [3]. This completes the proof of our Lemma.

9
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3 Large deviations

In this section we show how to obatain our large deviation result for the
intersection local time, Theorem 1, from a large deviation result for an ap-
proximate intersection local time together with exponential approximation.

Let X;(t),---,X,(t) be independent d-dimensional symmetric stable pro-
cesses of index 5. We assume p(d — ) < d. Recall that the approximate
intersection local time is defined by

(3.1) Qpte —/ / {/Rd Hh i(s;) —x)dx|ds; - - - ds,

and that
(32) Qpt = ll_r}fol Op e

The following large deviation result for o, will be proven in Section 4.

Theorem 5 Assume that p(d — 3) < d. Then for any A >0
1 1/p 2 P e
(3.3) lim - log Eexp {Ma'} = sup {A(/ (2 %ho)(@)] ) _pgw(g,g)}
t—oo ¢ ’ geFy Rd

The following Theorem on exponential approximation will be proven in
Section 6.

Theorem 6 Assume that p(d — 3) < d. Then for any A > 0,

1
(3.4) lim sup lntn sup — logEeXp {Napre — /P = 0.
Proof of Theorem 1: By Holder’s inequality,
~1 1/p 1/py) /e 1 1/py\ 1/
Eexp{Aa o)} } < (E exp {Aay; }) (E exp {ba Aoyt c—ap | })

(3.5)
where 0 < a,b <1 and a=! + b~ = 1. Hence by Theorem 5

36 swp D ([ 1t h@p) " - pEla.)}

gEFB

1 1
< li%ninf—tlogEexp{)\a }~|—hmsupb log E exp {ba " Nae, — apy|'/P}
—00 @



Letting € — 0 and using Theorem 6 and (2.10)
1
(3.7) lim inf p log E exp {Aazl,{tp}

> a sup {)\a_l(/Rd |g(w)|2pd$> w —p&p(g,g)}

96.7'—11,
d(p—1)

_dp=1) __pB
=ap T pB—d(p—1) ()\a 1)pﬁ7d(p71)wa,

Letting a — 1,

(r—1) p
(3.8) hm 111f logEeXp {)\a F1 > pipﬁdfd@l*) APF=A=D) My p.
On the other hand,

(3.9) FEexp {Aa;{tp} < (E exp {ara/? }) e (E exp {bA|ay e — Ozp,t|1/p}) v

D,t€

Therefore, using Theorem 5

1
(3.10) lim sup " log E exp {)‘azlo,/tp}

t—o0

<a ' sup {w\(/Rd (g2 * hs)(x)|pdx>l/p — p5¢(g,g)}

96.7:1/,

1
+ lim sup b log E'exp {bA|apre — Ozt\l/p}

t—o00

<atsup {A( [ o@rar) "~ peyfo.0))

gE.’Fq/)

+l1msup log E exp {bA|ayr.c — P}

t—oo b

Letting € — 0 and using Theorem 6 and (2.10)

1
(3.11) lim sup — logEeXp {)\a 4

t—o00

<ot sup {ar( [ lo@Par) " pEu0.0))

gEfw
d(p—1)

=a p "~ pB—d(p— 1)()\@)Pﬂ d(P 1)wa




Letting a — 1,

1 __d=1) 3
(3.12) lim sup — log E exp {)xozll,{tp} <p Pl 1) \ A (5T My,

t—o00 t

Combining what we have,

1 __dp=1)
(313) thm z logEeXp {)\a;’/tp} =p pﬁ—fl(pl_l))\pﬁ—sz)—l) Md)7p A>0

Finally, by the Gartner-Ellis theorem,

1 __dp-1)
(3.14) Jim n log P{a;(tp > ht} = —sup{\—p P dGrT) \FB=4r) My}

A>0
Bp—d(p—1)

_ _ppsrdp-ndP —1) (529 —d(p — 1)) P oles
3 ﬂpr,p

4 Exponential Asymptotics for the Approxi-
mate Intersection Local Time

In this section, we fix € > 0 and write
t

(4.1) L(t, z,€) :/ he(X(s)—2)ds ze€R t>0
0

For each 1 < j < p, let L;(t,z,€) be the analogues of L(t,x,¢) with X ()
being replaced by X (t).

For any 6 > 0, using * to denote convolution, write

(12 Mup0) = sup {0 [ [+ he(x)]pdx)l/p - &ulf )},

fE]'—w

43 Nupe®) = sup {0 [ 1P enra) - ps(r )

f€f¢
By the fact that || f|]o =1

[ e < sup (72 n @) < ()

zER4

so that the functions My, () and Ny, () are continuous for any fixed € > 0.



Theorem 7 For any 6 > 0 and integers d > 1, p > 2,

1/p
(4.4) tlim %logEeXp {9</d LP(t,x, E)dSC> } = My,(0)
00 R

—

and

.1 P 1/p
(4.5) Jim S log F exp {6</Rdj1;[1Lj(t,:c, e)da:) } = Ny p.e(0).

Proof of Theorem 7: We start with the following result based on the
Feynman-Kac formula:

(4.6) hm logEeXp{/ f(X }> sup {/ f(x)g”(z)dz—Ey(g, g)}
geEFy

where f can be any bounded, measurable function f on R?. This can be
proven in a manner similar to our proof of (4.2) in [5], which deals with the
one-dimensional case. (Alternatively, (4.6) can be derived by the methods
used in [7], which also deals with the one-dimensional case. Using those
methods one can show that we have equality in (4.6), although we will not
need that).

We begin by proving the lower bounds for (4.4) and (4.5). Notice that for
any r > 0, and any measurable function f on R? with |f|, =1 and f(z) =0
for x| > r

(4.7) (/{IwIST}L (t,z e)d:z:)l/p >/ VL(t, z, €)dx —/ f*he(X(s))ds.

By (4.6) we have

1 1/p
(4.8) hm inf — logEexp {9(/ LP(t,x, e)dx) }
t—o0 {lz|<r}
> 0 * D, 2(z)dx — Ey(g, }
> o { J o f @) @)z~ £4(9.9)
= sup <0 2)g? * he(x)dz — Ey(g, }
swp {0 [ T @)~ Eulo.0)

Taking the supremum over f on the right-hand-side,

1/p
LP(t,x, e)dw) }
|z|<r}

1/p
> sup {0(/ |g2*he($)|pd$> —5w(979)}-
gEFy {lz|<r}

10

1
(4.9) litm inf n log E exp {9</{



In particular, letting r = oo gives the lower bound for (4.4).

To prove the lower bound for (4.5), we let r > 0 be finite in (4.9). For
any function f(z), let R, f(z) be the restriction of f(z) to B,, the closed ball
of radius r centered at the origin. It follows from the definition (4.1) that
IL@E, - lloe < [lhelloct and sup, , |L(t,2,€) — L(t, y, €)| < [[Vhelloo tlz = y].
Hence if we set

(4.10) A ={fe€C(B)| sup [f(@)] < lhellos
and sup [f(z) = f(y)| < [Vhelloo |z — yl}

z,yE By
we have that

1
(4.11) SRL(L-€) € A

Note that by Ascoli’s Lemma A, . is a precompact subset of C'(B,) in the
uniform norm, and a fortiori A, . is a precompact subset of LP(B,). We use
K, . to denote the closure of A, . in LP(B,).

Consider the continuous, non-negative functional ¥ defined on (L?(B,))":

1 \p 1/p
Vi ) = X f o, 1) w) ([ r_[le] )
(4.12)
Clearly, ¥ = 0 on the diagonal
{(fh”’afp); flzzfp}

Hence, for given 6 > 0 and any g € LP(B,) there exists a b = b(g, ) > 0 such
that
(4.13) U(fr,---, fp) <9 if f; € B(g,b) for V1< j<p

where B(g,b) stands for the open ball in LP(B,) with the center g and the
radius b. Therefore,

(4.14) Eexp{ (/{qu} H Ltz e)dx>1/p}
S 2 </{xlér} Lt E)dx> 1/1’};

e‘StE[exp{

pi=

1

gRTLj(t, '76) € B(g,b), V1 S ] S P
p

— 0 (E[exp {g</{x|9~} LP(t, x, e)daz) l/p}; %RTL(t, -, €) € B(yg, b)D )

11




Let {B(gl, bi), -+, B(gn, bN)} be a finite sub-family of the open sets

{Bl9.b(9,0)); g€ K.}

which covers K, .. Then by (4.11)

(4.15) E[exp {g /{IwISr} LP(t,x, e)dx)l/p}l

N

< ;Elexp {g</B7 LP(t,x, e)dx)l/p}; %RTL(t, L €) E B(gi,bi)l.

Therefore,

1 0 /py 1
li%r_{(i)glf 7 log lrélif%}]ch[exp {]_9</{Im|§r} LP(t, x, e)dx) }; ;RTL(t, - €) € By, bl)]

1 0 1/p
(4.16) > liminf —log £ lexp {— / LP(t, z, e)dm) }] :
tmoo 1 D J{lz|<r}

Combining this with (4.9) (with 6 being replaced by p~'6), and (4.14) we
have

lim inf ! log £ 0 ﬁ Li( )d w
mm inf — log exp{ (/ (t,x, € x) }
100 ¢ flal<ry 55

J=1

4.17 > —0 f T
@ z—srpsp ([ jgtehapin) - Eo0) |

geFy \ P

Letting 6 — 07 and r — oo we obtain the lower bound for (4.5):
1 p 1/p
(4.18) lim inf : log F exp {0(/d 1Lt =, e)dx) } > Ny pe(8).
—00 R i

We now prove the upper bound for (4.4). We may let ¢t — oo along the
integer points. Let m > 0 be fixed and let GG,, be the discrete subgroup of
R? consisting of vectors whose coordinates are integer multiples of m. Let
T¢ be the quotient of R4 modulo G, and let ©: R* — T% be the canonical
map. Then the T¢-valued process X, (t) = ¢(X(t)) is Markov process, the
symmeric stable process on the torus T%. Notice that T¢ becomes a compact
group under the induced distance d(z,,y.) = |z — y|, where = and y satisfy

12



W(z) = ., 1(y) = y» and x,y € [0,m)?. Let \(dz,) be the Lebesgue (Haar)
measure on T¢ and write

L.(t,x.,€) ZLtm—i—mke /he* «(s)—z)ds t>0 x*ETffl
kczd
(4.19)
where h.. is a function on Td defined by
(4.20) hew(2 ) Z he(x + mk).
kezd

Notice that

(4.21) / Lptxed:B—Z/ LP(t,x + mk, €)dx

keZzd
< / L(t,z + mk,¢)| dx :/ [L.(t, 2, )" A(dx,).
[0,m]d k;d )] [
Using the methods we used in the proof of Lemma 6 of [5], which deals
with the one-dimensional case, we can show that for any bounded, measurable
function f on T¢

tim S log Besp { [ 700(dsh = sw { [ f@)g @M ~Eumy(9.9) )

t—oo gEfmT% m

(4.22)

Here 1

(4.23) Euryl9:9) = D dWIGNI—
Ae(Zr) 2

where g(\) denotes the Fourier transform of g € L?(T%), and

(4.24) Fyrs =19 € LA(T2) | gl e =1, Eyra(g,9) < oo},
We will use the notation f x,, g(z) = [ra f(z — y)g(y)\(dy) for convolution
of functions on 7. By (4.22),

(4.25) tlirg)%logEexp{/Td f(x*)L*(t,x*,e)/\(dx*)}

m

= tlgrolo % log E exp { /Ot I *m hﬂ*(X*(s))ds}
= sup {/T:% f *m h€7*(x)g2(x)/\(dx) — 5w7T$(g,g)}

gefw’Trur!z

= sw { [ 1@)g* 5 b (@A) — Euy (090}

ge}—w’TgL s

13



From (4.20) and the fact that h, € S(R?) we see that || ||oo and [V A 00
are both finite. It follows from the definitions (4.19) that ||L.(¢, -, €)]|c0 <
[|Pexlloot and sup, , [Lu(t, 2, €) — Li(t, y, €)| < [[Vhe|oot|z —y|. Hence if we
set

(426) Ao ={f € C(Tp) | sup |L(t,2,6)| < el

x€TY
and  sup |L.(t,z,€) — L.(t,y,€)| < [[Vhelloolz — yl}
z,yeTd
we have that )
(4.27) gL*(t, L €) € Aupe.

Note as before that by Ascoli’s Lemma A, . is a precompact subset of C(T4)
in the uniform norm, and a fortiori A, . is a precompact subset of LP(T2).
We use K., to denote the closure of A, .. in LP(T%). Let ¢ > 1 be the
conjugate of p and let § > 0 be fixed. By the Hahn-Banach Theorem and
compactness, there are finitely many bounded functions fi,---, fy in the
unit sphere of L4(Ty;) such that

(4.28) ( /T d |h(x)|p)\(d:c))1/p < max [ F@h@Nd) 5 Yhe K.

m

In particular, using (4.27)

(4.29) E<exp {0</Td

m

< eatéEexp {9 /T;% fi(x)L*(t,x,e))\(dx)}.

L.(t,x, @]ﬂ(d@) Up})

Hence by (4.25),

sy i oz Eexp {8 [ [L.(a0raan) )

t—o00 .

<5+ max s {0 F@)e s e (M) — Eurg (9.9}

1<i<N
<< gefw,Tf,lz

<d4 sup {9(/% (g2 *om, hg*(x))pdx)

ge]'—w!TgL

1/p

- 5¢,T;,il(979)}-

14



In view of the relation (4.21) and Lemma 3 below, letting 6 — 0 and then
m — oo we obtain the upper bound for (4.4):

1/p
(4.31) hmsup log E exp {9</d Lp(t,x,e)d:r) } < My p.e(0).
R

t—oo

By the inequality

(4.32) (/Rd llej(t,:r;, e)dx) w < %z: (/Rd L?(t,x,e)d:c)l/p
we have

Eexp{ (/ HL (t,x, € da:) p} < [Eexp{%(/m Lp(t,x,e)da:)l/p}]p.
(4.33)

From (4.31) (with @ being replaced by p~'6) we have the upper bound for
(4.5):

1 p 1/p
(4.34) limsup — logEeXp{ (/Rd 11 Lj(t,x,e)dx> } < Ny p.e().
j=1

t—o00

5 Localization
In this section we assume < 2. The case of Brownian motion was developed
n [3]. By the Lévy-Khintchine formula

1 —cos(A-y)
Rt Jarp(y)

where Jy45(y) > 0 is a symmetric positively homogeneous function of degree
d 4 B and we may assume that for some 0 < ¢ < C' < 00

(5.2) cly| P < Jaraly) < Cly|*7.

(5.1) () =2 dy

Using Parseval’s formula we find that
|2
5.3 / dy dz.
(5.3) Elfi )= |, [ de x
Recall that for a function h(x) on R? we set h*(:v) = Y kezd h(z + mk).

15



Lemma 3 Let p > 1 and let h be any non-negative measurable function
satisfying

C
. < —
(54) ()] < o

for some ¢ > 0. Then for any 6 >0

(5.5) limsup sup {0</d (§2 %o h*(x)>pdx)1/p — &p,TgL(gag)}

m—00 ge]—‘w’ng T
< su {9(/ ( 2 x h(x))pdx) 1/p — &l )}
>~ ge]% R g v\gd, 9

Proof of Lemma 3: Let g € Fy 14 be fixed. We may consider g to be
extended to R? by periodicity. Then

(5.6) / g (z)dx = 1.
(0,m]4
and
(57)  Frahe@) = [ ge—y) 3 hly+mk) =g« h(z)
[0,m] kezd
Hence
(5.8) swp g eh(@) = s [ g2y) Y hle —y - mK)dy
z€[0,m]4 z€[0,m]d /[0,m]¢ kezd

gc/ FP(y)dy < c
[0,m]@

using (5.4) and (5.6).
We also have

o glr +y) — ( )?
5.9 £ / / dyd
(5.9) 4,12(9,9) ot St Tans ydx

where the last equality follows as in the proof of (5.3).
Note that by (5.6) we have

_9 .
(5.10) /[o,m]d g° * h(z)dr = /Rd h(z)dx < oo.

Throughout, ¢ will denote a constant which may depend on h. Write
d
=U ({ngi <2vm}PU{m —2ym < z; §m}>.
i=1
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By Lemma 3.4 in Donsker-Varadhan (1975), there is an a € R® such that
/ g* x h(z + a)dz < .
E

m

We may assume a = 0, i.e.,

c
5.11 / 2 5 hix)de < -
(5.11) [ e hade < -
for otherwise we may replace g(-) by g(a + -). Define the function ¢ on R!
by
xm /2 0<xz<m/?
1 12 « » < _ anl/2
¢(r) = 1/2 ~1/2 "= xl/? e
m/* —xm m—-—-m/<x<m
0 otherwise
and write

p(z) = ¢(x1) - d(zg) @ = (21,---,2q) € R?

) = 3e)el) | [, PO 0y = 5o VA ().
Then |p| <1, [Vo| < y/d/m and f € Fp.
Note that
(5.12) 13(W)e(y) — g(z)e(z)]?
= (g(y) — g(2)e(y) + g(x)(p(y) — (x))?
=19(y) — 9(@)[*0*(y) + () |p(y) — o(z)?
+219(y) — 9(x)|e(y)g(z)|e(y) — p(z)]
Using
(5.13) g (@)ley) — plx)?
7*(x)|e(y) — 2 (Lo, mpe () + Ljo,mpe (1))

< 2dm”2g% (@) (Lo mpa () + Lo mja(y)) (Jy — 2 A ly — )
we find, exactly as in (4.13)-(4.18) of [5] that
(5.14) A&y(f,

_/Rd/m de (x);p(ﬂc)! dy da

< &4(3,9) +emMES(G.9) + em ™V
<(1+4+cem” 1/8)5¢(g g) +em Y4

)
o()
1
(

17



On the other hand, recalling (5.7)

(5.15) (/Tgl (8 #n h*(x))pdx>1/p
N </[0,m]d 9” h(x)!pdai)l/p
= </[ i\ B g° * h(x)lpdx)l/p + ( /E 1° * h(x)|pdx)1/p

By (5.11) and (5.8)
10 () = () g b = ()"

Now

(5.17) ( /[Om}d\E 152 * h(x)|pdx)1/p
<a( [ irenwpar) s ([ jar - enwpas)

+

Using the fact that |Af? — g?| < g* and (5.10)

519 ([ 45— shpar)

1/p p—1
<(f  #eh@de) (s (A=) < h(@)T
[0,m]¢ ze[0,m]d\E
p—1
<c( sup |(Af?—=g°) xh(z)]) 7.
x€[0,m]I\E
Also
(5.19) sup  [(Af? —g°) * h(x)]
z€[0,m]d\E

(Af? = 3°)(y)h(z — y)dyl.

= sup |
z€[0,m]|*\ E Rd

Since (Af? — g?)(y) = 0 for all y € [mY/2, m —m'/?)¢, if also x € [0,m]?\ E
we see that the only non-zero contribution to our last integral is for |z —y| >

18



m'/2. Hence, using (5.4)

(5.20) sup | [ (Af? = g°)(y)h(z — y)dy]
zefo,m\E /R
1

<c sup / 7 (y)—————dy

ve[0,m]d  {le—y|=m1/2} ) 1+ |z —yl|dre

1

< o —C/2 / 2 d
S em S ST WS v =y

z€[0,m]d

< Cn?f(/2

where the last inequality follows as in (5.8).
Combining (5.14)-(5.20) and noticing that A < 1 we obtain

(521 0 frg (3o 1)) )~ E0245.9)

< A(+ ) 001+ o) (fuol 2 e npar)” — £47 )
+9(\/_%)1/p + Oem /2 4+ mf/4

< Mun(6(1 4 -5)) +0(-5)" 4 bom—2 4 e

where M, ,(0) denotes the right hand side of (5.5). Taking the supremum
on the left hand side over g € F, r4 and then letting m — oo on both sides
we have (5.5).

6 Exponential Approximation

Given §j = (y1,...,y,) € R let

t t p
ap7t’€(g) = /0 o /0 |:»/Rd H he(Xl(sl) + Y — CC) dx dSl B 'dSp
=1

where, as before, h.(x) = e ?h(x/¢), h is a positive symmetric function in
the Schwartz space S(R?) with [hdx = 1, and X;(t), -, X,(t) are in-
dependent d-dimensional symmetric stable processes of index . We have
Qpre = pre(0).
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Since he(z) = (27) 7 [pa €Th(eX) dX where h is the Fourier transform of
h, we have

(6.1)  apec() = (2m)7 [

[0,¢]?
p

[/Rd </de iy e (X(s)+u— H (e\) d/\l> da:] HdSI

=1 =1
= (2 —dp/
(2m) o
P
—iYP N / i N (Xa(s)+y)
|:‘/Rde =1 (de =1 A (st thG}\l d)\)dxj|l]T[1d81

=1

Using the Fourier inversion formula in the form

p—1 . p_l
62)  (27)d /R e~ Az /R eTMTR() dAy de = F(— 3 \)
=1

we have that

p

p—1 p
() = (2m) 4D - (/Rd(p_l) i3y Ae(Xu(s)+u) H (eN) z:H1 d)\l) l:l_lldSZ

=1
(6.3)
where from now on we have \, = — (7' \)).

Theorem 8 Let p(d — 3) < d. Then for some p,6 >0

(6 4) sup FE exp 2] |ap,t,e - Oép7t’61|ﬁ/(d(l7—1)+p) o
) e — 5"P5/(d(l7—1)+p) 0B/ (d(p—1)+p)—1 .

e,e’ t>0
and | () 3/do-1)+0)
ap,t,e - ap,t,e g P P
(65)  sw E <eXp {8|y|pﬁ/(d(p—1)+p) 198/ (@(p—1)+p)—1 }) =00

We will prove this theorem shortly, but first note that it follows from our
Theorem and Kolmogorov’s lemma that for any g

(6.6) . (Y) =: lli% Apt.c(7)
exists a.s and in all LY spaces.
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It then follows that for some p,6 > 0

|0 i () — s ()P (AP=1)+)
(6.7) sup E <exp {9|€]p6/(d(p—1)+p) w1 () <

€,t>0,y
and | () [0/(do=1)+0)
ap,t - ap,t g P P
(6.8) tfg}géoE <eXp {6 |g|p5/(d(p—1)+p) tpB/(d(p—1)+p)—1 }) < 0.

Let us first show how (6.7) leads to Theorem 6.
Proof of Theorem 6: By (6.7) for some 6 > 0

e — ap,t|<
where 5 .
¢= > -

By the estimate

(6.10) Eexp{Aapte — ozp7t|1/p}
< Mt Eexp {A|ape — 0P (ap—aplzaner)

A apse — gl
)\5t p,t,€ p,t
+Eexp{5p<_1 = }

we conclude that for any A > 0,

(6.11) lim sup lim sup log Eexp {Mapie — aps' P} =0
e—0 t—o0
which completes the proof of Theorem 6.
Proof of Theorem 8: Using (6.2) with the convention that A\, =
we have

(6.12) pe(§) — pre(§) = (2m) P~ 1)/

[0,
p p

~ p—l1 P
(/ atp-1) ol {H (€A) = Hh(ﬁl)\l)} 11 d)J) [ ds:.
o =1 =1

=1 =1

21
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Consequently, using the notation f—I\(e)\., =10 (e)\lj)
(6.13)  E({apc(y) — apre(9)}™)
— (9 fdm(pfl)/ /
( 7T) [Ot]mP Rd(p—1)m

m p—1 p
(H o S A (X ) [1(H H(EXN)T drs)IT dsiy)

=1 Jj=1

where from now on
(6.14) = ZA” Vi=1,...,m.

Since we can write

(6.15) 0, = |J Dplm,...,m)

where the union goes over all p-tuples of permutations 7y, ..., m, of {1....,m},
and Dy, (71,...,mp) = {{51;}|0 < sima) < -0 < Simm) < ¢, VI}, we can
write (6.13) as

(6.16)  E({ap(y) = apre(®)}™)

T yeeeyp ¥ HmMAT L
T ot S M (Kt \ T (77 7 = -
E (He s SR T ) [ICH (A ;) = H(EANT dh)(T dsiy)-
=1 j=1 =1 =1
On D,,(my,...,mp) we can write
(6.17) ZM Xi(s1,) Zuz w13 (X1 (St () — Xi(St.m(i-1)))
Jj=1 j=1
where .
(6.18) Utmg = D Almi)-
i=j
Hence on D, (7, ..., 7))
p . m X p
(6.19) E (H e i z(s;,]-)> =[] F
=1 I=1
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where

(6.20) Fy = e 2im Y m) Sum ) =stmG-1)
If we set )
(6.21) G, =][F"*"
I
then

Py P
(622) E (H eZZJ‘:1 Lj l(ﬂ,j)) — H G,
=1 r=1

Since |h(e);) — iAz(e’/\l7j)| < Cle — €P| A ;|7 for any p < 1, we have the
bound

k
(6.23) |H(eX. ;) — H(€X )| < Cle — €| Z BYRILS
=1

Using Holder’s inequality we have

p —m mo L p—1
‘/Rd(p—nm FE <H ele:1 )\l,j~(Xl(8l,j)+yl)> H(H(G)\,j) . H(E/)\.J)) H d)\l,j’
Jj=1 =1

=1
P

P m p—1
< C’m|€ — 6/‘pm /Rd(p_l)m H Gr H Z ”‘ H d)‘lJ
=1

r=1 7j=1 i=1 =

1/p
Z /Rd( pH|/\1JJ| H d)‘lj>

Absorbing the inner sum in the constant C™, we consider

(624) < C™e~ |ﬂmH<

Z'17

m p—1
GP
(6.25) max /RM o Jr:[l 1P l:Hl d\.
If i # r, then using (6.18) we can bound each |); ;|” by a sum of two |u ,, ;|*’s
and we can be sure that no factor |u; ., ;|* appears more than twice. If i = r
then we first use (6.14) to bound each |, ;|? by a sum of |A; ;|?’s with ¢ # 7,
and then proceed as in the last sentence. Thus we can bound (6.25) by

m ar T (ol (L) .
(6.26) max C /Rd(pq)m b 1;[ 1;[ - duy r, j

hy

< max cm H H S1,m(j Sl,m(j_l))_(d+ph’"(l’j))/’6
" 1=1 j=1
l#r
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where the max runs over the the set of functions h,.(l,j) taking values
0,1,2,3,4 such that h,(r,j) = 0 and 3, ; h.(I, j) = m. Hence

p . m . o mo P p—1
‘/Rd(p_l)m E <H ezZ]’:1 Arj-(Xa( l,J)+yl)> H(H(E)\-,j) _ H(EIA.J)) H d)\l,j’
Jj=1 =1

=1
1/p

p P m A
(6.27) < C™e — €™ ]| max HH Slm) — St (1))~ @TPhr@I)/B
r=1 T =1 j=1
I£r

— Cm|6 /|pm maX HH Sl ) — Stm(— )) (d(p—l)—f—zle he(1,5)p)/ kB
""" pl 1j=1

Recalling that p(d — 3) < d so that d(p — 1)/pS < 1, hence for p > 0
sufficiently small d(p — 1) /pfB + 4p/B < 1 we see that

o) ’ ( { \ap,t,e(]ue)_—eolé';;,t,a ()| }m> |
< C™(ml)

p m
P 1;[ (/o H(Tj - Tj—l) W=D+, heDR)/PB gy, )

<r<o<rm<t i

p gm(=d(p=1)/pB)=3 ;7 D P L he(Li)p/PB,,
< C™ ma | |
- h I'(m(1

—d(p—1)/pB) — X0 X7, r(lJ)p/pﬁ)
< Cmtm(p—(d(p—l)w)/ﬁ)(m!)(d(p—l)ﬂ)/@

Writing n = (d(p — 1) + p)/8 > 1 we then have

(6.29) E ({ |e(§) — e (7)] }m> [ < emmy.

le — €|rtr—n

By Holder’s inequality

(6.30) ‘E ({ |Oép,t,e(g) — Opte (g)| }m/n> ’ < Cm(m')

le — €|t

(6.4) follows from this.
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To prove (6.5), we note that just as in (6.16) we have

(6.31) E({apre = apre(9)}™)

7777777

We then proceed as before, but instead of (6.23) we now use the fact that
|H(-)||cc < C and for any p < 1, we have the bound

. P p
(6.32) 1 — i MW < Olgle S Ayl
=1
The rest of the proof of (6.5) is completed as before. This completes the
proof of Theorem 8.

Theorem 9 Let p(d — 3) < d. Then a.s. oy, converges as € — 0 locally
unifomrly in t. Hence, a.s. a, = lime_g e 15 continuous in t.

Proof of Theorem 9: Fix M < oco. We will show that for some ¢ > 0 and
any even integer n

(6.33) sup B ({ap e — apre}") < Cul(t6) — (¢, €)"

t,t'€[0,M]

0<e,e’<1
It will then follow from Kolmogorov’s Lemma and the fact that a;; is con-
tinuous in ¢ and € > 0 that for some ¢’ > 0 and ¢, < oo a.s.

(6.34) SUp |apre — ap o] < cul(t ) — (£, €)]S
t,t/ €[0,M]
0<e,e’<1
which implies our Theorem.
It thus remains to prove (6.33). We begin with

E({apre = apre}”) <2°E ({apre = apr e} )+2"E ({p e — appre}”) -
(6.35)
From (6.28) we obtain

(6.36) sup B ({appe — appe}”) < Cole — €.
t’€[0,M]
0<e,e’<1
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We may assume that ¢’ < t. As in (6.16) we have
(6.37) E({apte — appe}™)
Py x no__ p—1 p
E <H ezzj:1 L z(sz,j)> H H(eA.) H A\ H dsy.;.
1=1 j=1 I=1 I=1

Following through the estimates used in the proof of the last theorem we find
that

(6.38)  E({apre — apret”)

p
< 2. / [T I Gstme) — sumi-) "0 dsy,

iy D)0~ [049) 11 5

1/r’
P n
> {/ I T stm@) = Stm(i—1) " 4@ D/*5 dSl,j}
Dn(7r1

----- mp) 1=1j=1

where the last step used Holder’s inequality with % + % = 1. Take ¢ > 1
sufficiently close to 1 so that gd(p —1)/kB < 1 and therefore the last integral
in (6.38) is bounded. Then we see from (6.38) that for some p’ > 0

(6.39) sup E ({apte — apret”) < Cult — t’|"/".

t,t/ €[0,M]
0<e<1

This completes the proof of (6.33) and hence of Theorem 9.

7 The law of the iterated logarithm

In this section we will prove Theorem 2. We start with some preparatory
material. Given § = (yi,...,y,) € R, we use the notation P?Y and EY
to denote probabilities and expectations with respect to the p independent
symmetric stable processes X (), -+, X,,(t) in R? of index 3, where now each

X;(0) = y;. Note that P'{a,/? > ht} = P{a,,(5)"/? > ht} hence
sup P{|ap () =[P > 5t}+|11‘V1<f Pg{a;{tp > ht} > P{oc;/tp > (h+0)t}.
Y€

|7l<e

(7.1)
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Using this we see from (1.12) that

1
(7.2) max { lim sup - log sup P{|a,,(7) — ap|"? > 6t},

t—00 [gl<e
1 _
liminf - log inf Py{oczl,/tp > ht}}
t—oo ¢t |g|<e ?
> —(h + 5)pﬁ/d(p—1)Aw7p

Now, from (6.8), as in the proof of (6.11) we find that for any A > 0,

1
(7.3) lim sup lim sup ; log sup E exp {\|ay (7)) — ap|V/P} =0

e—0 t—o00 |7|<e

so that by Chebyshev,

1
(7.4)  limsuplimsup i log sup P{|a,,(7) — ap|''? > 6t} = —o0.

e—0 t—o0 |g|§e

Using this to first let € — 0 in (7.2) and then § — 0 we have

1 ]
(7.5) lim inf lim inf - log In‘q<f P a,, > htt} > —pPar=l g,
€E— —00 y|<e

By the scaling property {X (ts): s > 0} £ t'/8{X(s); s > 0} of the stable
process which led to (1.7) we have also that

Bp—d(p—1)
B8

(7.6) L (op) = L7 (1

O‘zw)

Hence,

(7.7) lim inf lim inf log inf
e—0 t—oo loglogt |7|<e(t/ loglogt)!/5

. —d(p-1) (r=1)
Py{ap,t > Wt (loglogt)dpl31 }

. . . . . . g p
= hrgrl)lglf hgg}f loglog ! log I%?Sfe P {apvlog ogt > h(loglogt) }

_ _hﬂ/d(pfl)Awp
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Proof of Theorem 2: The upper bound follows from (7.7) and a standard
use of Borel-Cantelli lemma. We now prove the lower bound. Let t;, = k?*
and let o)

(7.8) h<A,,”
We first prove that

__Bp—d(p—1) —d(p—1)
(7.9)  limsupt,,, " (loglogtes1)™ @ a((te, tira]?) > h  a.s.

k—o0

By Markov property and Lévy’s Borel-Cantelli lemma, we need only show
that

Bp—d(p—1) d(p—1)

(7.10) ZPth{OCp,thrl*tk > hty " (loglogtyi1) 7 } =00 a.s.
K

where

)f?t = (Xl(t>7 e 7Xp(t))‘

However, it is easy to see that ¢, — t,, > nik? as k — oo so that by the
scaling property of the stable process, for any § > 0

S(tpyr — )P 5k2/8
loglog(tx+1 — tr) log k

P(IX,,| > ) < CJR

for any € > 0, since X; has  — ¢ moments. By the Borel-Cantelli lemma,
with probability 1 the events

§(tpr — ty)/?

X, | < k=12
Xl < foglog(tun — 1) T
eventually hold. Hence
loglogt ~
(7.11) lim (228K 1~ 0 as,
k—oo U+

On the other hand, by (7.7), if € > 0 is small enough,

1
(7.12) liminf ———— log inf
k—oo loglogty41 || <e(ty+1/loglogty1)'/P
Bp—d(p—1) d(p—1)

7] P
Py{apvtkﬂ—tk = htk+1ﬁ (loglogtyy1)™ 7 } > —1
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Finally the lower bound follows from the relation

(713) Ap tyir > a((tk>tk+1]p)

d(p—1)

and the fact that h can be arbitrarily close to A;,p ? . This completes the
proof of Theorem 2.

8 Moderate deviations for random walks

Set

(8.1) (n,x,€) i (M)

and define [;(x, n, €) analogously.

Theorem 10 For each 6 > 0,

1 dp 1

(8.2) JI_{EOV_IOgEeXp{Q “b(nv; ) ( )( > P(nx e))l/p}
A
) 1/p
= sup {0( [ (6 +h)@)ldz) " = Eulg.9)}
gefw R4

and
(8.3) lim —logEexp {9 b(n d<p 1)( > Hl n,x,e )1/p}

zezd j=1

= s (o [ 1067+ he><:c>rpdx)”” ~pEu(a.0)}

g€f¢

Proof of Theorem 10: Given ¢t > 0, write ¢, = [tn/v,] and 7, = [n/t,].
Then n < t,(v, + 1). By independence and the triangle inequality,

(8.4) FEexp {Gﬁb(nu s 1)( > P(n,x e))l/p}
n zeZd

tn nt+1

< (Eexp{ﬁ%b(ny d/p( 3 {Zh ( ny_lis)}p>1/p}>

- <Eexp{ </ {Vn Zh ( ilb/inly) )w])}pdﬂl/p})vnﬂ‘
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Let

(8.5) antf) = [ ([ rr)- %)@)pm

Applying by Skorohod’s generalization of Donsker’s invariance principle for
random walks in the domain of attraction of a stable process, [12], to the con-
tinuous, uniformly bounded and uniformly convergent functionals {¢, (f)} on

C([0,t]; R*) we have
(8.6) nlLHOIOEeXp{ </ {n kz:lh ( (iby(nnll; )x])}pdx> l/p}

= Eexp{&(/}{d Lp(t,x,e)dm>1/p}

where .
(8.7) L(t,z,¢) :/ he(X () — z)ds.
0
Therefore,
d(p 1) 1/p
(8.8) hmsup—logEeXp {6’ “b(ny, ! ( > Pln,x 6)) }

A

1 1/p
< —log E exp {9(/ Lp(t,:l?,G)d{L’) }
t Rd

Let t — co. By Theorem 7 we have the upper bound,

1 p—
(89)  limsup—log Eexp {9 "o ) (X Pl 6))1/p}

n—oo
Un zeZ4

< sup {o( [ 15"+ he)(x)\dey/p - Eulg.)}

gefw
By the inequality
L i/p 1 1/p
(8.10) ( SII lj(n,x,e)) < - Z( > l?(n,x,e))
xeZd j=1 pJ:1 z€Zd
and independence,

(8.11) hmsup—logEexp {9 “b(nv; ! d(p 1)( > Hl n,x,e )1/p}

n—oo Un xczd j=1

< sup {9</Rd (g2 * he)(x)lpdl“)l/p —pgw(g,g)}

g€f¢
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On the other hand, for any nice function f on R? with ||f||, =1,

(812) (X r(nae)” = b(nunl)d/p( /R P, [b(nvnl)x],e)daz)l/p

x€Z4

> b [ ()i, o)), da

by 5 z”: Rdf(x)he<s<k) b_(rE;b/(ZI;;l)x])dx
k=1 n
IRVl G, - - S(k) —2\dr
= b(nv, ") {()-F;/Rdf( )he(b(nmjl) )d}
~ by 1 _d(pp—l) oln n S(k)
= by o) + 200 h () |
By the same argument as in Theorem 4.1 of [4],
e L B 07 S S(k)
(8.13) lim inf an gl p{9 n ’;(‘f he>(b(nu,jl)>}
> oup {0 [ (7 h) @) @)~ £4(5,9)|
= sup {0 [ 1(@)(s" « b))z ~ Eulo.0)
This gives
(8.14) 11ﬂ£f—logEexp {9 “b(nv; ! d(p 1)( Z P(n,z 5)>1/p}

> s (o f 0t noer) el

Take r > 0 and write B, = {z||z| < r}. Define

(8.15) I(n,z,€) = % Zn: he(b(i(yml)

k=1
Taking the function f to be supported on B, = {z||x| < r} in the above
argument also gives

1 . 1/p
(8.16) lim inf — log F exp {Hun (/ P(t,x, e)dx> }
B

n—oo

ngeug{ (/ Ig * Ne) |pd$> _&b(gag)}
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Then, as in (4.11), there is a compact set K in LP(B,) such that

~

(8.17) I(n,-,e)e K as. n>1

Then the argument used in section 4 gives

1 P 1/p
(8.18) liminfy—logEeXp {Hun(/ Hlj(t,x,e)dx> }
n—00 B, e
/p
> sup{ (/ (97 * he) !pd-r) —pgw(g,g)}
96.7:11,
Letting r — oo gives
o1 LA 1/p
(8.19) hggolfy—nlogEexp{Ql/n</Rdj1;[1lj(t,x,e)d:B> }
) 1/p
> sup {9(/ l(g *he)(:p)|pdw> —p€¢(g,g)}.
g€f¢, R4
Notice that
p 1 P n S(k)
8.20 / li(t,x, €e)d he J —z)dx
( ) ]1_[ T Rd]HlkZ:l (b(nugl) )
Si(
- / d 11 Zhe( = )dm
R 521 k=1
(1 +0(1n)) —d Ty 5]
= v he dz
s ;jﬂlkzl S )
1+o0(1, N ~ P
= —( nl’( ))b(nunl)d(p 1 Z Hlj(t,x,e)dx

zezd j=1
Thus

1 p 1
(8.21) liminf—logEexp{@ﬁb(ny d( )( > I [ i(n,z,€) )1/p}
n—oo . n

xczd j=1

> sup (o [Nt ho@par)” ~ ptsfo.0))

96.7:3

This completes the proof of Theorem 10.
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Proof of Theorem 3: We need only prove the first statement, since the
second is the consequence of this and Cramer’s theorem. For the upper bound
we follow some ideas given in [3, section 5]. For this we need

(8.22) nPb(n)P=VI,,, 4, Qp1.

This is proven in [11] when d = 2, and the case of d = 1 is similar. Let
tn = [tn/v,] and v, = [n/t,] + 1. By [3, Theorem 5.1],

d(p—1)

(8.23) iﬂ%(%)mb(yﬁn) BT
< ( io g(%)mb(%) o ”m(E(I;’;n))l/pY"

As in [3, Lemma 5.2 |, there is a positive sequence {C,,} such that

d(p—1)

(8:24)  sup (2)"b(-2) T (B, < O m= 0,1,
and o gm
(8.25) mzogo < 0.

By the weak law and dominated convergence theorem,

(326) 3 () () B ) — 3 D (B
. m=0 m!\n Un pitn m Om! et .
Hence,
L og S 20 (Uy (2 55 ) ”9m N
hgljgp Zlog Z (n ) b(z) (E(L), < = log Z .
(8.27)

Let t — oo on the right hand side of (8.27). By [3, Lemma 5.3] and Theorem
1

?

(8 28) lim su ilo Z i(_)mb(ﬁ) d(pz;l)m(E([m ))l/p
. nﬂoop Up, g ' Up p,n
< sup{Q/\l/p — p_lAB’p.d/\ﬂ/d(P—l)}
A>0
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By [3, Lemma 5.3] again, we have the desired upper bound,

1
(8.29) limsup — log P{I,, > AnPb(ny, )P~V < — Ay NP1,

n—oo UVp
Recalling (1.13) and the notation P* introduced at the beginning of sec-

tion 7 we now prove the lower bound:

1 _
(8.30) liminf —log inf )P”“{Ipm > AnPb(ny; A1}

n—oo y, O |5<Ch(n

L -1 (ﬁp —d(p — 1)) T \B/d(p-1)
B BpMy

Since the basic idea is given in the proof of [3, Theorem 6.1], we only sketch
the argument. To prove the above lower bound, we need only show that
_ d(p—1 d(p—1 8

ligr_lgolf Vin log |az|§ircl£(n) E* exp {G%b(m/n) = )Izi/f} > p_p,af(d<p7)1)9p575<p71) M.
(8.31)

As in the argument used in [3, Theorem 6.1}, we may assume aperiodicity
of the random walks and we can then prove, that for any small © > 0 and
€ > 0, there is a 6 > 0 and K > 0 such that

B p m
©32) il B () 2 0 E( X Tk,

z€Zd j=1

for all non-negative integers m. This, together with Theorem 10, gives

1 ) .
(8.33) liminf —log inf FE* (eXp {QQb(m/_l) A })
n

n—oo y, |Z|<Cb(n) n pnt(un]

> sup (o [ lig? e no@par)” pee.0))

gEfg

As € — 0, the right hand side approaches

) 1/p __d(p-1) s
sup {9( /R g2 pdl’) —p&p(g,g)} = p P aD OpaeT My,

ge]—"g

Notice that u > 0 can be arbitrarily small. (8.31) then follows by a suitable
change of parameters. This completes the proof of Theorem 3.
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Proof of Theorem 4: As in the continuous case, Theorem 4 will follow
once we establish

1
(8.34) limliminf —log  inf  PY{I,, > MPb(nv,')~4¢-1}

=0 nmoopy, ly|<eb(nvy ')

> _d(p— 1) <ﬂp—d(p— 1))%)\%
I} BpMyp

This follows from (8.30).

References

1. R. Bass and X. Chen, Self intersection local time: critical exponent, large
deviations and law of the iterated logarithm. Ann. Probab. (to appear).

2. R. Bass, X. Chen and J. Rosen, Large deviations for
renormalized  self-intersection  local times of stable processes.
http://www.math.csi.cuny.edu/ rosen/riltld.pdf

3. X. Chen, Ezponential asymptotics and law of the iterated logarithm for
intersection local times of random walks. Ann. Probab. (to appear).

4. X. Chen and W. Li, Large and moderate deviations for intersection local
times. Probab. Theor. Rel. Fields (to appear).

5. X. Chen, W. Li and J. Rosen, Large deviations for local times
of stable processes and stable random walks in 1 dimension.
http://www.math.utk.edu/ xchen

6. A. Dembo and O. Zeitouni (1998). Large Deviations Techniques and Ap-
plications. (2nd ed.). Springer, New York.

7. M. D. Donsker and S. R. S. Varadhan, On laws of the iterated logarithm
for local times. C. P. A. M. XXX (1977), 707-753.

8. J.-F. Le Gall and J. Rosen, The range of stable random walks. Ann.
Probab. 19 (1991), 650-705.

9. M. Marcus and J. Rosen, Laws of the iterated logarithm for the local
times of recurrent random walks etc., Ann. Probab. 30 (1994), 467-499.

35



10. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion.
Springer-Verlag, New York (1999).

11. J. Rosen, Random walks and intersection local time. Ann. Probab. 18

(1990), 959-977.

12. A. V. Skorohod, Limit theorems for stochastic processes. Theory Probab.
Appl. 2 (1957), 138-171.

13. S. J. Taylor, Multiple points for the sample paths of the symmetric stable
processes. Z. W. 5 (1966), 247-264.

Xia Chen Jay Rosen

Department of Mathematics Department of Mathematics
University of Tennessee College of Staten Island, CUNY
Knoxville, TN 37996-1300 Staten Island, NY 10314
xchen@math.utk.edu jrosen3@earthlink.net

36



