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Abstract

For a symmetric random walk in Z
2 which does not necessarily have bounded jumps we

study those points which are visited an unusually large number of times. We prove the
analogue of the Erdős-Taylor conjecture and obtain the asymptotics for the number of visits
to the most visited site. We also obtain the asymptotics for the number of points which
are visited very frequently by time n. Among the tools we use are Harnack inequalities and
Green’s function estimates for random walks with unbounded jumps; some of these are of
independent interest.
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1 Introduction

The paper (4) proved a conjecture of Erdős and Taylor concerning the number L∗
n of visits to

the most visited site for simple random walk in Z
2 up to step n. It was shown there that

lim
n→∞

L∗
n

(log n)2
= 1/π a.s. (1.1)

The approach in that paper was to first prove an analogous result for planar Brownian motion
and then to use strong approximation. This approach applies to other random walks, but only if
they have moments of all orders. In a more recent paper (11), Rosen developed purely random
walk methods which allowed him to prove (1.1) for simple random walk. A key to the approach
both for Brownian motion and simple random walk is to exploit a certain tree structure with
regard to excursions between nested families of disks. When we turn to random walks with
jumps, this tree structure is no longer automatic, since the walk may jump across disks. In
this paper we show how to extend the method of (11) to symmetric recurrent random walks
Xj , j ≥ 0, in Z

2. Not surprisingly, our key task is to control the jumps across disks. Our main
conclusion is that it suffices to require that for some β > 0

E|X1|3+2β < ∞, (1.2)

together with some mild uniformity conditions. (It will make some formulas later on look nicer
if we use 2β instead of β here.) We go beyond (1.1) and study the size of the set of ‘frequent
points,’ i.e. those points in Z

2 which are visited an unusually large number of times, of order
(log n)2. Perhaps more important than our specific results, we develop powerful estimates for our
random walks which we expect will have wide applicability. In particular, we develop Harnack
inequalities extending those of (10) and we develop estimates for Green’s functions for random
walks killed on entering a disk. The latter estimates are new even for simple random walk and
are of independent interest.

We assume for simplicity that X1 has covariance matrix equal to the identity and that Xn is
strongly aperiodic. Set p1(x, y) = p1(x − y) = P

x(X1 = y). We will say that our walk satisfies
Condition A if the following holds.

Condition A. Either X1 is finite range, that is, p1(x) has bounded support, or else for any

s ≤ R with s sufficiently large

inf
y ;R≤|y|≤R+s

∑

z∈D(0,R)

p1(y, z) ≥ ce−β s1/4
. (1.3)

Condition A is implied by

p1(x) ≥ ce−β |x|1/4
, x ∈ Z

2, (1.4)

but (1.3) is much weaker. (1.3) is a mild uniformity condition, and is used to obtain Harnack
inequalities. Recent work on processes with jumps (see (1)) indicates that without some sort of
uniformity condition such as (1.3) the Harnack inequality may fail.

Let Lx
n denote the number of times that x ∈ Z

2 is visited by the random walk in Z
2 up to step

n and set L∗
n = maxx∈Z2 Lx

n.
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Theorem 1.1. Let {Xj ; j ≥ 1} be a symmetric strongly aperiodic random walk in Z
2 with X1

having the identity as the covariance matrix and satisfying Condition A and (1.2). Then

lim
n→∞

L∗
n

(log n)2
= 1/π a.s. (1.5)

Theorem 1.1 is the analogue of the Erdős-Taylor conjecture for simple random walks. We also
look at how many frequent points there are. Set

Θn(α) =
{

x ∈ Z
2 :

Lx
n

(log n)2
≥ α/π

}
. (1.6)

For any set B ⊆ Z
2 let TB = inf{i ≥ 0 |Xi ∈ B} and let |B| be the cardinality of B. Let

Ψn(a) =
{

x ∈ D(0, n) :
Lx

TD(0,n)c

(log n)2
≥ 2a/π

}
(1.7)

Theorem 1.2. Let {Xj ; j ≥ 1} be as in Theorem 1.1. Then for any 0 < α < 1

lim
n→∞

log |Θn(α)|
log n

= 1 − α a.s. (1.8)

Equivalently, for any 0 < a < 2

lim
n→∞

log |Ψn(a)|
log n

= 2 − a a.s. (1.9)

The equivalence of (1.8) and (1.9) follows from the fact that

lim
n→∞

log TD(0,n)c

log n
= 2 a.s. (1.10)

For the convenience of the reader we give a proof of this fact in the appendix.

In Section 2 we collect some facts about random walks in Z
2, and in Section 3 we establish the

Harnack inequalities we need. The upper bound of Theorem 1.2 is proved in Section 4. The
lower bound is established in Section 5, subject to certain estimates which form the subject of
the following three sections. An appendix gives further information about random walks in Z

2.

There is a good deal of flexibility in our choice of Condition A. For example, if E|X1|4+2β < ∞,
we can replace β s1/4 by s1/2. On the other hand, if we merely assume that E|X1|2+2β < ∞, our
methods do not allow us to obtain any useful analogue of the Harnack inequalities we derive in
Section 3.

2 Random Walk Preliminaries

Let Xn, n ≥ 0, denote a symmetric recurrent random walk in Z
2 with covariance matrix equal

to the identity. We set pn(x, y) = pn(x − y) = P
x(Xn = y) and assume that for some β > 0

E|X1|3+2β =
∑

x

|x|3+2βp1(x) < ∞. (2.1)
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(It will make some formulas later on look nicer if we use 2β instead of β here.) In this section
we collect some facts about Xn, n ≥ 0, which will be used in our paper. The estimates for the
interior of a ball are the analogues for 2 dimensions and 3 + 2β moments of some results that
are proved in (10) for random walks in dimensions 3 and larger that have 4 moments. Several
results which are well known to experts but are not in the literature are given in an appendix.

We will assume throughout that Xn is strongly aperiodic. Define the potential kernel

a(x) = lim
n→∞

n∑

j=0

{pj(0) − pj(x)} . (2.2)

We have that a(x) < ∞ for all x ∈ Z
2, a(0) = 0, a(x) ≥ 0, and for |x| large

a(x) =
2

π
log |x| + k + o(|x|−1) (2.3)

with k an explicit constant. See Proposition 9.2 for a proof.

Let D(x, r) = {y ∈ Z
2 | |y − x| < r}. For any set A ⊆ Z

2 we define the boundary ∂A of A
by ∂A = {y ∈ Z

2 | y ∈ Ac, and infx∈A |y − x| ≤ 1} and the s-band ∂As of ∂A by ∂As = {y ∈
Z

2 | y ∈ Ac, and infx∈A |y − x| ≤ s}. For any set B ⊆ Z
2 let TB = inf{i ≥ 0 |Xi ∈ B}. For

x, y ∈ A define the Green’s function

GA(x, y) =
∞∑

i=0

E
x (Xi = y, i < TAc) . (2.4)

Our first goal is to obtain good estimates for the Green’s function in the interior of a disk and
for the exit distributions of annuli.

For some c < ∞
E

x(TD(0,n)c) ≤ cn2, x ∈ D(0, n), n ≥ 1. (2.5)

This is proved in Lemma 9.3. In particular,
∑

y∈D(0,n)

GD(0,n)(x, y) ≤ cn2. (2.6)

Define the hitting distribution of A by

HA(x, y) = P
x(XTA

= y). (2.7)

As in Proposition 1.6.3 of (8), with A finite, by considering the first hitting time of Ac we have
that for x, z ∈ A

GA(x, z) =




∑

y∈Ac

HAc(x, y)a(y − z)



− a(x − z). (2.8)

In particular

GD(0,n)(0, 0) =
∑

n≤|y|≤n+n3/4

HD(0,n)c(0, y)a(y) (2.9)

+
∑

|y|>n+n3/4

HD(0,n)c(0, y)a(y).
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Using the last exit decomposition

HD(0,n)c(0, y) =
∑

z∈D(0,n)

GD(0,n)(0, z)p1(z, y) (2.10)

together with (2.6) and (2.1) we have for any k ≥ 1

∑

|y|≥n+kn3/4

HD(0,n)c(0, y) ≤
∑

z∈D(0,n)

GD(0,n)(0, z)P (|X1| ≥ kn3/4)

≤ cn2/(kn3/4)3+2β ≤ c/(k3n1/4+β). (2.11)

Using this together with (2.3) we can bound the last term in (2.9) by

∑

|y|>n+n3/4

HD(0,n)c(0, y)a(y) (2.12)

≤
∞∑

k=1

c

k3n1/4+β
sup

n+kn3/4≤|x|≤n+(k+1)n3/4

a(x)

≤ C

n1/4+β

∞∑

k=1

1

k3
log(n + (k + 1)n3/4) = O(n−1/4).

Using (2.3) for the first term in (2.9) then gives

GD(0,n)(0, 0) =
2

π
log n + k + O(n−1/4). (2.13)

Let η = inf{i ≥ 1 |Xi ∈ {0} ∪ D(0, n)c}. Applying the optional sampling theorem to the
martingale a(Xj∧η) and letting j → ∞, we have that for any x ∈ D(0, n)

a(x) = E
x(a(Xη)) = E

x(a(Xη) ; Xη ∈ D(0, n)c). (2.14)

To justify taking the limit as j → ∞, note that |a(Xj∧η)|2 is a submartingale, so E|a(Xj∧η)|2 ≤
E|a(Xη)|2, which is finite by (2.3) and (2.11); hence the family of random variables {a(Xj∧η)}
is uniformly integrable. Using (2.3) and the analysis of (2.12) we find that

E
x (a(Xη) ; Xη ∈ D(0, n)c) (2.15)

=
∑

y∈∂D(0,n)
n3/4

a(y)Px (Xη = y) +
∑

y∈D(0,n+n3/4)c

a(y)Px (Xη = y)

=

(
2

π
log n + k + O(n−1/4)

)
P

x (Xη ∈ D(0, n)c) + O(n−1/4).

Using this and (2.3) we find that for 0 < |x| < n,

P
x
(
T0 < TD(0,n)c

)
=

(2/π) log(n/|x|) + O(|x|−1/4)

(2/π) log n + k + O(n−1/4)

=
log(n/|x|) + O(|x|−1/4)

log(n)
(1 + O((log n)−1). (2.16)
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By the strong Markov property

GD(0,n)(x, 0) = P
x
(
T0 < TD(0,n)c

)
GD(0,n)(0, 0). (2.17)

Using this, (2.13) and the first line of (2.16) we obtain

GD(0,n)(x, 0) =
2

π
log
( n

|x|
)

+ O(|x|−1/4). (2.18)

Hence
GD(0,n)(x, y) ≤ GD(x,2n)(x, y) = GD(0,2n)(0, y − x) ≤ c log n. (2.19)

Let r < |x| < R and ζ = TD(0,R)c ∧ TD(0,r). Applying the argument leading to (2.16), but with
the martingale a(Xj∧ζ) − k we can obtain that uniformly in r < |x| < R

P
x
(
TD(0,R)c < TD(0,r)

)
=

log(|x|/r) + O(r−1/4)

log(R/r)
(2.20)

and

P
x
(
TD(0,r) < TD(0,R)c

)
=

log(R/|x|) + O(r−1/4)

log(R/r)
. (2.21)

Using a last exit decomposition, for any 0 < δ < ǫ < 1, uniformly in x ∈ D(0, n) \ D(0, ǫn)

P
x(|XTD(0,ǫn)∧TD(0,n)c

| ≤ δn) =
∑

z∈D(0,n)\D(0,ǫn)

∑

w∈D(0,δn)

GD(0,n)(x, z)p1(z,w)

≤ cn2 log nP(|X1| > (ǫ − δ)n)

≤ cǫ,δn
2 log n

1

n3+2β
= cǫ,δ log n

1

n1+2β
. (2.22)

Here we used (2.19) and the fact that |z − w| ≥ (ǫ − δ)n.

We need a more precise error term when x is near the outer boundary. Let ρ(x) = n − |x|. We
have the following lemma.

Lemma 2.1. For any 0 < δ < ǫ < 1 we can find 0 < c1 < c2 < ∞, such that for all
x ∈ D(0, n) \ D(0, ǫn) and all n sufficiently large

c1
ρ(x) ∨ 1

n
≤ P

x(TD(0,δn) < TD(0,n)c) ≤ c2
ρ(x) ∨ 1

n
. (2.23)

Proof: Upper bound: By looking at two lines, one tangential to ∂D(0, n) and perpendicular
to the ray from 0 to x, and the other parallel to the first but at a distance δn from 0, the upper
bound follows from the gambler’s ruin estimates of (10, Lemma 2.1).

Lower bound: We first show that for any ζ > 0 we can find a constant cζ > 0 such that

cζ
ρ(x)

n
≤ P

x(TD(0,δn) < TD(0,n)c) (2.24)

for all x ∈ D(0, n − ζ) \ D(0, ǫn).

6



Let T = inf{t |Xt ∈ D(0, δn) ∪ D(0, n)c} and γ ∈ (0, 2β). Let a(x) = 2
π (a(x) − k), where k is

the constant in (2.3) so that a(x) = log |x| + o(1/|x|). Clearly a(Xj∧T ) is a martingale, and by
the optional sampling theorem,

a(x) = E
x(a(XT ); XT ∈ D(0, n)c) (2.25)

+E
x(a(XT ); XT ∈ D(0, δn) \ D(0, δn/2))

+E
x(a(XT ); XT ∈ D(0, δn/2)).

It follows from (2.22) that

E
x(a(XT ); XT ∈ D(0, δn/2)) = O(n−1−γ) (2.26)

and
P

x(XT ∈ D(0, δn/2)) = O(n−1−γ). (2.27)

From (2.25) we see that

log |x| ≥ log n P
x(TD(0,n)c < TD(0,δn)) (2.28)

+ log(δn/2)Px(TD(0,n)c > TD(0,δn)) + o(1/n)

= log n[1 − P
x(TD(0,δn) < TD(0,n)c)] + log(δn/2)Px(TD(0,δn) < TD(0,n)c)]

+ o(1/n)

= log n + (log(δn/2) − log n)Px(TD(0,δn) < TD(0,n)c) + o(1/n).

Note that for some c > 0
log(1 − z) ≤ −cz, 0 ≤ z ≤ 1 − ǫ. (2.29)

Hence for x ∈ D(0, n − ζ) \ D(0, ǫn)

log(n/|x|) = − log
(
1 − (n − |x|)

n

)
≥ c

ρ(x)

n

Solving (2.28) for P
x(TD(0,δn) < TD(0,n)c) and using the fact that and ρ(x) ≥ ζ to control the

o(1/n) term completes the proof of (2.24).

Let A = D(0, n − ζ) \ D(0, ǫn). Then by the strong Markov property and (2.24), for any
x ∈ D(0, n) \ D(0, n − ζ)

P
x(TD(0,δn) < TD(0,n)c) (2.30)

≥ P
x(TD(0,δn) ◦ θTA

< TD(0,n)c ◦ θTA
; TA < TD(0,n)c)

= E
x(PXTA (TD(0,δn) < TD(0,n)c); TA < TD(0,n)c)

≥ cζ
ζ

n
P

x(TA < TD(0,n)c).

(2.23) then follows if we can find ζ > 0 such that uniformly in n

inf
x∈D(0,n)\D(0,n−ζ)

P
x(TA < TD(0,n)c) > 0. (2.31)

To prove (2.31) we will show that we can find N < ∞ and ζ, c > 0 such that for any x ∈ Z
2

with |x| sufficiently large we can find y ∈ Z
2 with

p1(x, y) ≥ c and |x| − N ≤ |y| ≤ |x| − ζ. (2.32)
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Let Cx be the cone with vertex at x that contains the origin, has aperture 9π/10 radians, and
such that the line through 0 and x bisects the cone. If |x| is large enough, Cx ∩D(x,N) will be
contained in D(0, |x|). We will show that there is a point y ∈ Z

2 ∩ Cx ∩ D(x,N), y 6= x, which
satisfies (2.32). Note that for any y ∈ Z

2 ∩ Cx ∩ D(x,N), y 6= x, we have

1 ≤ |y − x| ≤ N. (2.33)

Furthermore, if α denotes the angle between the line from x to the origin and the line from x
to y, by the law of cosines,

|y|2 = |x|2 + |y − x|2 − 2 cos(α) |x| |y − x|. (2.34)

Then for |x| sufficiently large, using (2.33),

|y| =
√

|x|2 + |y − x|2 − 2 cos(α) |x| |y − x| (2.35)

= |x|
√

1 +
|y − x|2
|x|2 − 2 cos(α) |y − x|

|x|

= |x|
(

1 − cos(α) |y − x|
|x| + O(

1

|x|2 )

)

= |x| − cos(α) |y − x| + O(
1

|x|)

≤ |x| − cos(9π/20)/2.

Setting ζ = cos(9π/20)/2 > 0 we see that the second condition in (2.32) is satisfied for all
y ∈ Z

2∩Cx∩D(x,N), y 6= x, and it suffices to show that we can find such a y with p1(x, y) ≥ c.
(c,N remain to be chosen).

By translating by −x it suffices to work with cones having their vertex at the origin. We let
C(θ, θ′) denote the cone with vertex at the origin whose sides are the half lines making angles
θ < θ′ with the positive x-axis. Set C(θ, θ′,N) = C(θ, θ′) ∩D(0,N). It suffices to show that for
any θ we can find y ∈ C(θ, θ+9π/10, N), y 6= 0, with p1(0, y) ≥ c. Let jθ = inf{j ≥ 0 | jπ/5 ≥ θ}.
Then it is easy to see that

C(jθπ/5, jθπ/5 + 2π/3,N) ⊆ C(θ, θ + 9π/10,N).

It now suffices to show that for each 0 ≤ j ≤ 9 we can find yj ∈ C(jπ/5, jπ/5 + 2π/3), yj 6= 0,
with p1(0, yj) > 0, since we can then take

c = inf
j

p1(0, yj) and N = 2 sup
j

|yj|. (2.36)

First consider the cone C(−π/3, π/3), and recall our assumption that the covariance matrix of

X1 = (X
(1)
1 ,X

(2)
1 ) is I. If

P(X1 ∈ C(−π/3, π/3), X1 6= 0) = 0

then by symmetry, P(X1 ∈ −C(−π/3, π/3), X1 6= 0) = 0. Therefore

P

(
|X(2)

1 | > |X(1)
1 |
∣∣∣X1 6= 0

)
= 1.
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But then 1 = E|X(2)
1 |2 > E|X(1)

1 |2 = 1, a contradiction. So there must be a point
y ∈ C(−π/3, π/3), y 6= 0, with p1(0, y) > 0.

Let Aj be the rotation matrix such that the image of C(jπ/5, jπ/5+2π/3) under Aj is the cone
C(−π/3, π/3) and let Y1 = AjX1. Then

P(X1 ∈ C(jπ/5, jπ/5 + 2π/3), X1 6= 0) (2.37)

= P(Y ∈ C(−π/3, π/3), Y1 6= 0).

Note Y1 is mean 0, symmetric, and since Aj is a rotation matrix, the covariance matrix of Y1 is
the identity. Hence the argument of the last paragraph shows that the probability in (2.37) is
non-zero. This completes the proof of of our lemma.

Lemma 2.2. For any 0 < δ < ǫ < 1 we can find 0 < c1 < c2 < ∞, such that for all
x ∈ D(0, n) \ D(0, ǫn), y ∈ D(0, δn) and all n sufficiently large

c1
ρ(x) ∨ 1

n
≤ GD(0,n)(y, x) ≤ c2

ρ(x) ∨ 1

n
. (2.38)

Proof: Upper bound: Choose δ < γ < ǫ and let T ′ = inf{t |Xt ∈ D(0, γn) ∪ D(0, n)c}. By the
strong Markov property,

GD(0,n)(x, y) =
∑

z∈D(0,γn)

P
x(XT ′ = z)GD(0,n)(z, y)

=
∑

z∈D(0,δn)

P
x(XT ′ = z)GD(0,n)(z, y)

+
∑

z∈D(0,γn)\D(0,δn)

P
x(XT ′ = z)GD(0,n)(z, y)

≤ cPx(XT ′ ∈ D(0, δn)) log n + cPx(XT ′ ∈ D(0, γn)). (2.39)

Here we used (2.19) and the bound GD(0,n)(z, y) ≤ GD(y,2n)(z, y) ≤ c uniformly in n which
follows from (2.18) and the fact that |z − y| ≥ (γ − δ)n. The upper bound in (2.38) then follows
from (2.22) and Lemma 2.1.

Lower bound: Let T = inf{t |Xt ∈ D(0, δn) ∪ D(0, n)c}. By the strong Markov property,

GD(0,n)(x, y) =
∑

z∈D(0,δn)

P
x(XT = z)GD(0,n)(z, y). (2.40)

The lower bound in (2.38) follows from Lemma 2.1 once we show that

inf
y,z∈D(0,δn)

GD(0,n)(z, y) ≥ a > 0 (2.41)

for some a > 0 independent of n. We first note that

inf
y,z∈D(0,δn)

inf
z∈D(y,(ǫ−δ)n/2)

GD(0,n)(z, y) (2.42)

≥ inf
y∈D(0,δn)

inf
z∈D(y,(ǫ−δ)n/2)

GD(y,(ǫ−δ)n)(z, y) > 0
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uniformly in n by (2.18). But by the invariance principle, there is a positive probability inde-
pendent of n that the random walk starting at z ∈ D(0, δn) will enter D(y, (ǫ−δ)n/2)∩D(0, δn)
before exiting D(0, n). (2.41) then follows from (2.42) and the strong Markov property.

We obtain an upper bound for the probability of entering a disk by means of a large jump.

Lemma 2.3.

sup
x∈D(0,n/2)

P
x(TD(0,n)c 6= T∂D(0,n)s

) ≤ c(s−1−2β ∨ n−1−2β log n). (2.43)

Proof of Lemma 2.3: We begin with the last exit decomposition

sup
x∈D(0,n/2)

P
x(TD(0,n)c 6= T∂D(0,n)s

) (2.44)

= sup
x∈D(0,n/2)

∑

y∈D(0,n)

w∈D(0,n+s)c

GD(0,n)(x, y)p1(y,w)

= sup
x∈D(0,n/2)

∑

|y|≤3n/4

n+s≤|w|

GD(0,n)(x, y)p1(y,w)

+ sup
x∈D(0,n/2)

∑

3n/4<|y|<n

n+s≤|w|

GD(0,n)(x, y)p1(y,w).

Using (2.19) and (2.1)

sup
x∈D(0,n/2)

∑

|y|≤3n/4

n+s≤|w|

GD(0,n)(x, y)p1(y,w) (2.45)

≤ c log n
∑

|y|≤3n/4

P(|X1| ≥ n/4)

≤ c log n
∑

|y|≤3n/4

1

|n|3+2β
≤ cn−1−2β log n.

Using (2.38) and (2.1) we have

sup
x∈D(0,n/2)

∑

3n/4<|y|<n

n+s<|w|

GD(0,n)(x, y)p1(y,w) (2.46)

≤ cn−1
∑

3n/4<|y|≤n

(n − |y|)P(|X1| ≥ s + n − |y|)

≤ cn−1
∑

3n/4<|y|≤n

n − |y|
(s + n − |y|)3+2β

≤ cn−1
∑

3n/4<|y|<n

1

(s + n − |y|)2+2β
≤ cs−1−2β .
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Here, we bounded the last sum by an integral and used polar coordinates:

∑

3n/4<|y|<n

1

(s + n − |y|)2+2β
≤ 2π

∫ n

3n/4

1

(s + n − u)2+2β
u du (2.47)

≤ cn

∫ n/4

0

1

(s + u)2+2β
du ≤ cns−1−2β.

Combining (2.16) and (2.43) we obtain, provided n−1−2β log n ≤ s−1−2β and |x| ≤ n/2,

P
x
(
TD(0,n)c < T0 ; TD(0,n)c = T∂D(0,n)s

)
(2.48)

= 1 − (2/π) log(n/|x|) + O(|x|−1/4)

(2/π) log n + k + O(n−1/4)
+ O(s−1−2β).

Using (2.20) and (2.43) we then obtain, provided R−1−2β log R ≤ s−1−2β and |x| ≤ R/2,

P
x
(
TD(0,R)c < TD(0,r) ; TD(0,R)c = T∂D(0,R)s

)
(2.49)

=
log(|x|/r) + O(r−1/4)

log(R/r)
+ O(s−1−2β).

Lemma 2.4. For any s < r < R sufficiently large with R ≤ r2 we can find c < ∞ and δ > 0
such that for any r < |x| < R

P
x(TD(0,r) < TD(0,R)c ;XTD(0,r)

∈ D(0, r − s)) ≤ cr−δ + cs−1−2β . (2.50)

Proof. Let A(R, r) denote the annulus D(0, R) \ D(0, r). Using a last exit decomposition we
have

P
x(TD(0,r) < TD(0,R)c ;XTD(0,r)

∈ D(0, r − s))

=
∑

w∈D(0,r−s)

∑

y∈A

GA(x, y)p1(y,w)

=
∑

w∈D(0,r−s)

∑

r<|y|≤r+r1/(2+β)

GA(x, y)p1(y,w)

+
∑

w∈D(0,r−s)

∑

r+r1/(2+β)<|y|<R

GA(x, y)p1(y,w). (2.51)

By (2.1), for y ∈ A ∑

w∈D(0,r−s)

p1(y,w) ≤ c

(|y| − (r − s))3+2β
.

Let Uk = {y ∈ Z
2 : r + k − 1 < |y| ≤ r + k}. We show below that we can find c < ∞ such that

for all 1 ≤ k ≤ r1/(2+β), ∑

y∈Uk

GA(x, y) ≤ ck, x ∈ A. (2.52)
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For the first sum in (2.51), we then obtain

∑

w∈D(0,r−s)

∑

r<|y|≤r+r1/(2+β)

GA(x, y)p1(y,w)

≤ c
r1/(2+β)∑

k=1

∑

y∈Uk

GA(x, y)
1

(|y| − (r − s))3+2β

≤ c

r1/(2+β)∑

k=1

k

(k − 1 + s)3+2β
≤ c

∞∑

j=0

c

(j + s)2+2β

≤ c

s1+2β
. (2.53)

For the second sum in (2.51), we use (2.19) to bound GA(x, y) by c log R and the fact that the
cardinality of Uk is bounded by c(r + k) to obtain

∑

w∈D(0,r−s)

∑

r+r1/(2+β)<|y|≤R

GA(x, y)p1(y,w)

≤ c
∞∑

k=r1/(2+β′)

∑

y∈Uk

GA(x, y)
1

(|y| − (r − s))3+2β

≤ c(log R)

∞∑

k=r1/(2+β)

r + k

k3+2β

≤ c(log R)[r(r1/(2+β))−(2+2β) + (r1/(2+β))−(1+2β)]. (2.54)

By our assumptions on R, r and s we have our desired estimate, and it only remains to prove
(2.52).

We divide the proof of (2.52) into two steps.

Step 1. Suppose 1 ≤ k ≤ r1/(2+β) and x ∈ D(0, r + k − 2). Then there exists 0 < c < 1 not
depending on k, r, or x such that

P
x(TD(0,r) < TD(0,r+k)) ≥ c/k. (2.55)

Proof. This is trivial if k = 1, 2 so we may assume that k ≥ 3 and that x ∈ D(0, r)c. By a
rotation of the coordinate system, assume x = (|x|, 0). Let Yk = Xk · (0, 1), i.e., Yk is the second
component of the random vector Xk. Since the covariance matrix of X is the identity, this is
also true after a rotation, so Yk is symmetric, mean 0, and the variance of Y1 is 1. Let S1 be the
line segment connecting (r−1,−k1+β/2) with (r−1, k1+β/2) and S2 the line segment connecting
(r + k − 1,−k1+β/2) to (r + k − 1, k1+β/2). We have S1 ⊂ D(0, r) because

(r − 1)2 + (k1+β/2)2 = r2 − 2r + 1 + k2+β ≤ r2

by our assumption on k. Similarly S2 ⊂ D(0, r + k) because

(r + k − 1)2 + (k1+β/2)2 = (r + k)2 − 2(r + k) + 1 + k2+β ≤ (r + k)2.
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Let Li be the line containing Si, i = 1, 2, and Q the rectangle whose left and right sides are S1

and S2, resp.

If X hits L1 before L2 and does not exit Q before hitting L1, then TD(0,r) < TD(0,r+k). If

TL1 ∧TL2 is less than k2+β/2 and Y does not move more than k1+β/2 is time k2+β/2, then X will
not hit exit Q through the top or bottom sides of Q. Therefore

P
x(TD(0,r) < TD(0,r+k)) ≥ P

x(TL1 < TL2) − P
x(TL1 ∧ TL2 ≥ k2+β/2)

− P
x( max

j≤k2+β/2
|Yj| ≥ k1+β/2)

= I1 − I2 − I3. (2.56)

By the gambler’s ruin estimate (10, (4.2)), we have

I1 ≥ c
(r + k − 1) − |x|

(r + k − 1) − (r − 1)
≥ c

k
. (2.57)

It follows from the one dimensional case of (9.10) that for some ρ < 1 and all sufficiently large k

I2 ≤ P
x(TL1 ∧ TL2 ≥ k2+β/2) ≤ ρkβ/4

= o(1/k). (2.58)

For I3 we truncate the one-dimensional random walk Yj at level k1+β/4 and use Bernstein’s
inequality. If we let ξj = Yj − Yj−1, ξ′j = ξj1(|ξj |≤k1+β/4) and Y ′

j =
∑

i≤j ξ′i, then

P
x(Yj 6= Y ′

j for some j ≤ k2+β/2) ≤ k2+β

(k1+β/4)3+2β
= o(1/k). (2.59)

By Bernstein’s inequality ((3))

P
x( max

j≤k2+β/2
|Y ′

j | ≥ k1+β/2) ≤ exp
(
− k2+β

2k2+β/2 + 2
3k1+β/2k1+β/4

)
. (2.60)

This is also o(1/k).

Step 2. Let

Jk = max
x∈A

∑

y∈Uk

GA(x, y).

By the strong Markov property, we see that the maximum is taken when x ∈ Uk. Also, by the
Markov property at the fixed time m,

Jk ≤ m + sup
x∈Uk

E
x
[ ∑

y∈Uk

GA(Xm, y)
]
. (2.61)

We have

E
x
[ ∑

y∈Uk

GA(Xm, y);Xm /∈ D(0, r + k − 3)
]

≤ JkP
x(Xm /∈ D(0, r + k − 3)) (2.62)
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and using (2.55)

E
x
[ ∑

y∈Uk

GA(Xm, y);Xm ∈ D(0, r + k − 3)
]

≤ E
x[EXm [Jk;TUk

< TD(0,r)];Xm ∈ D(0, r + k − 3)]

≤ Jk(1 − c/k)Px(Xm ∈ D(0, r + k − 3)). (2.63)

Using (2.32), there exists m and ε > 0 such that for all x ∈ Uk

P
x(Xm ∈ D(0, r + k − 3)) ≥ ε. (2.64)

Using (2.64) and combining (2.62) and (2.63) we see that for all x ∈ Uk

E
x
[ ∑

y∈Uk

GA(Xm, y)
]
≤ Jk(1 − c′/k)

for some 0 < c′ < 1. Then by (2.61)

Jk ≤ m + Jk(1 − c′/k), (2.65)

and solving for Jk yields (2.52).

Using (2.21) and (2.50) we can obtain that for some δ > 0

P
x
(
TD(0,r) < TD(0,R)c ; TD(0,r) = T∂D(0,r−s)s

)
(2.66)

=
log(R/|x|) + O(r−δ)

log(R/r)
+ O(s−1−2β).

We now prove a bound for the Green’s function in the exterior of the disk D(0, n).

Lemma 2.5.
GD(0,n)c(x, y) ≤ c log(|x| ∧ |y|), x, y ∈ D(0, n)c. (2.67)

Proof of Lemma 2.5: Since GD(0,n)c(x, y) = P
x
(
Ty < TD(0,n)

)
GD(0,n)c(y, y), and using the

symmetry of GD(0,n)c(x, y), it suffices to show that

GD(0,n)c(x, x) ≤ c log(|x|), x ∈ D(0, n)c. (2.68)

Let

U1 = 0,

Vi = min{k > Ui : |Xk| < n or |Xk| ≥ |x|8}, i = 1, 2, . . . ,

Ui+1 = min{k > Vi : Xk = x}, i = 1, 2, . . .
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Then using the strong Markov property and (2.19)

GD(0,n)c(x, x) = E
x





∑

k<TD(0,n)

1{x}(Xk)



 (2.69)

≤
∞∑

i=1

E
x
[ ∑

Ui≤k<Vi

1{x}(Xk);Ui < TD(0,n)

]

≤
∞∑

i=1

E
x[G

D(0,|x|8)
(XUi , x);Ui < TD(0,n)]

≤ c2 log(|x|8)
∞∑

i=1

P
x(Ui < TD(0,n)).

We have
P

x(Ui+1 < TD(0,n)) ≤ E
x[PXUi (TD(0,|x|8)c < TD(0,n));Ui < TD(0,n)].

By (2.20),

P
XUi (TD(0,|x|8)c < TD(0,n)) = P

x(TD(0,|x|8)c < TD(0,n)) (2.70)

≤ log(|x|/n) + O(n−1/4)

log(|x|8/n)

=
log |x| − log n + O(n−1/4)

8 log |x| − log n

≤ log |x| + 1

7 log |x| ≤ 2

7
.

Therefore
P

x(Ui+1 < TD(0,n)) ≤ 2
7P

x(Ui < TD(0,n)).

By induction P
x(Ui < TD(0,n)) ≤ (2

7 )i, hence
∑

i P
x(Ui < TD(0,n)) < c4. Together with (2.69),

this proves (2.68).

Lemma 2.6.

sup
x∈D(0,n+s)c

P
x(TD(0,n+s) 6= T∂D(0,n)s

) ≤ cn2 log(n) s−3−2β + cn−1−β. (2.71)
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Proof of Lemma 2.6: Using (2.67)

sup
x∈D(0,n+s)c

P
x(TD(0,n+s) 6= T∂D(0,n)s

) (2.72)

= sup
x∈D(0,n+s)c

∑

y∈D(0,n+s)c

w∈D(0,n)

GD(0,n)c(x, y)p1(y,w)

≤ c
∑

y∈D(0,n+s)c

w∈D(0,n)

log(|y|) p1(y,w) ≤ c
∑

y∈D(0,n+s)c

log(|y|)P(|X1| ≥ |y| − n)

≤ c
∑

y∈D(0,n+s)c

log(|y|)(|y| − n)−3−2β

≤ c log(n)
∑

n+s≤|y|≤2n

(|y| − n)−3−2β + c
∑

2n<|y|

log(|y|)(|y| − n)−3−2β

≤ cn2 log(n) s−3−2β + c log(n)n−1−2β .

3 Harnack inequalities

We next present some Harnack inequalities tailored to our needs. We continue to assume that
Condition A and (1.2) hold.

Lemma 3.1 (Interior Harnack Inequality). Let en ≤ r = R/n3. Uniformly for x, x′ ∈ D(0, r)
and y ∈ ∂D(0, R)n4

HD(0,R)c(x, y) =
(
1 + O(n−3)

)
HD(0,R)c(x′, y). (3.1)

Furthermore, uniformly in x ∈ ∂D(0, r)n4 and y ∈ ∂D(0, R)n4 ,

P
x(XTD(0,R)c

= y , TD(0,R)c < TD(0,r/n3)) (3.2)

=
(
1 + O(n−3)

)
P

x(TD(0,R)c < TD(0,r/n3))HD(0,R)c(x, y).

Proof of Lemma 3.1: It suffices to prove (3.1) with x′ = 0. For any y ∈ ∂D(0, R)n4 we have
the last exit decomposition

HD(0,R)c(x, y) =
∑

z∈D(0,R)−D(0,3R/4)

GD(0,R)(x, z)p1(z, y)

+
∑

z∈D(0,3R/4)−D(0,R/2)

GD(0,R)(x, z)p1(z, y)

+
∑

z∈D(0,R/2)

GD(0,R)(x, z)p1(z, y). (3.3)

Let us first show that uniformly in x ∈ D(0, r) and z ∈ D(0, 3R/4) − D(0, R/2)

GD(0,R)(x, z) =
(
1 + O(n−3)

)
GD(0,R)(0, z). (3.4)
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To this end, note that by (2.3), uniformly in x ∈ D(0, r) and y ∈ D(0, R/2)c

a(y − x) =
2

π
log |x − y| + k + O(|x − y|−1) (3.5)

=
2

π
log |y| + k + O(n−3)

= a(y) + O(n−3).

Hence, by (2.8), and using the fact that HD(0,R)c(z, ·) is a probability, we see that uniformly in
x ∈ D(0, r) and z ∈ D(0, R) − D(0, R/2)

GD(0,R)(x, z) = GD(0,R)(z, x) (3.6)

=





∑

y∈D(0,R)c

HD(0,R)c(z, y)a(y − x)



− a(z − x)

=





∑

y∈D(0,R)c

HD(0,R)c(z, y)a(y)



 − a(z) + O(n−3)

= GD(0,R)(z, 0) + O(n−3).

By (2.18), GD(0,R)(z, 0) ≥ c > 0 uniformly for z ∈ D(0, 3R/4)−D(0, R/2), which completes the
proof of (3.4).

We next show that uniformly in x ∈ D(0, r) and z ∈ D(0, R) − D(0, 3R/4)

GD(0,R)(x, z) =
(
1 + O(n−3)

)
GD(0,R)(0, z). (3.7)

Thus, let z ∈ D(0, R) − D(0, 3R/4), and use the strong Markov property to see that

GD(0,R)(z, x) = E
z
(
GD(0,R)(XTD(0,3R/4)

, x) ; TD(0,3R/4) < TD(0,R)

)
(3.8)

= E
z
(
GD(0,R)(XTD(0,3R/4)

, x) ; TD(0,3R/4) < TD(0,R) ; |XTD(0,3R/4)
| > R/2

)

+E
z
(
GD(0,R)(XTD(0,3R/4)

, x) ; TD(0,3R/4) < TD(0,R) ; |XTD(0,3R/4)
| ≤ R/2

)

By (2.19) and (2.72) we can bound the last term by

c(log R) P
z
(
|XTD(0,3R/4)

| ≤ R/2
)
≤ c(log R)2R−1−2β. (3.9)

Thus we can write (3.8) as

E
z
(
GD(0,R)(XTD(0,3R/4)

, x) ; TD(0,3R/4) < TD(0,R) ; |XTD(0,3R/4)
| > R/2

)

= GD(0,R)(z, x) + O(R−1−β). (3.10)

Applying (3.4) to the first line of (3.10) and comparing the result with (3.10) for x = 0 we see
that uniformly in x ∈ D(0, r) and z ∈ D(0, R) − D(0, 3R/4)

GD(0,R)(x, z) =
(
1 + O(n−3)

)
GD(0,R)(0, z) + O(R−1−β). (3.11)
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Since, by (2.38), GD(0,R)(0, z) ≥ c/R, we obtain (3.7).

If X has finite range then the last sum in (3.3) is zero and the proof of (3.1) is complete.
Otherwise, assume that (1.3) holds. We begin by showing that

∑

z∈D(0,R/2)

GD(0,R)(x, z)p1(z, y) = O(R−3−β). (3.12)

By (2.19) we have GD(0,R)(x, z) = O(log R) so that the sum in (3.12) is bounded by O(log R)
times the probability of a jump of size greater than |y| − R/2 ≥ R/2, which gives (3.12).

To prove (3.1) it now suffices to show that uniformly in y ∈ ∂D(0, R)n4

R−3−β ≤ cn−3HD(0,R)c(0, y). (3.13)

Using once more the fact that GD(0,R)(0, z) ≥ c/R by (2.38),

HD(0,R)c(0, y) =
∑

z∈D(0,R)

GD(0,R)(0, z)p1(z, y) (3.14)

≥ C




∑

z∈D(0,R)

p1(y, z)


R−1.

(3.13) then follows from (1.3) and our assumption that R ≥ en, completing the proof of (3.1).

Turning to (3.2), we have

P
x(XTD(0,R)c

= y , TD(0,R)c < TD(0,r/n3)) (3.15)

= HD(0,R)c(x, y) − P
x(XTD(0,R)c

= y , TD(0,R)c > TD(0,r/n3)).

By the strong Markov property at TD(0,r/n3)

P
x(XTD(0,R)c

= y , TD(0,R)c > TD(0,r/n3)) (3.16)

= E
x(HD(0,R)c(XTD(0,r/n3)

, y); TD(0,R)c > TD(0,r/n3)).

By (3.1), uniformly in w ∈ D(0, r/n3),

HD(0,n)c(w, y) =
(
1 + O(n−3)

)
HD(0,n)c(x, y) .

Substituting back into (3.16) we have

P
x(XTD(0,R)c

= y , TD(0,R)c > TD(0,r/n3))

=
(
1 + O(n−3)

)
P

x(TD(0,R)c > TD(0,r/n3))HD(0,R)c(x, y).

Combining this with (3.15) we obtain

P
x(XTD(0,R)c

= y , TD(0,R)c < TD(0,r/n3)) (3.17)

=
(
P

x(TD(0,R)c < TD(0,r/n3)) + O(n−3)
)
HD(0,R)c(x, y).

Since, by (2.20)
inf

x∈∂D(0,r)n4

P
x(TD(0,R)c < TD(0,r/n3)) ≥ 1/4, (3.18)
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we obtain (3.2) which completes the proof of Lemma 3.1.

Using the notation n, r,R of the last Theorem, in preparation for the proof of the exterior
Harnack inequality we now establish a uniform lower bound for the Greens function in the
exterior of a disk:

GD(0,r+n4)c(x, y) ≥ c > 0, x ∈ ∂D(0, R)n4 , y ∈ D(0, R)c. (3.19)

Pick some x1 ∈ ∂D(0, R) and proceeding clockwise choose points x1, . . . , x36 ∈ ∂D(0, R) which
divide ∂D(0, R) into 36 approximately equal arcs. The distance between any two adjacent such
points is ∼ 2R sin(5◦) ≈ .17R. It then follows from (2.21) that for any j = 1, . . . , 36

inf
x∈TD(xj,R/5)

P
x(TD(xj+1,R/5) < TD(0,r+n4)) (3.20)

≥ inf
x∈TD(xj+1,2R/5)

P
x(TD(xj+1,R/5) < TD(xj+1,R/2)c) ≥ c1 > 0

for some c1 > 0 independent of n, r,R for n large and where we set x37 = x1. Hence, a simple
argument using the strong Markov property shows that

inf
j,k

inf
x∈TD(xj,R/5)

P
x(TD(xk ,R/5) < TD(0,r+n4)) ≥ c2 =: c36

1 (3.21)

Furthermore, it follows from (2.16) that for any j = 1, . . . , 36

inf
x,x′∈TD(xj,R/5)

P
x(Tx′ < TD(0,r+n4)) (3.22)

≥ inf
x∈TD(x′,2R/5)

P
x(Tx′ < TD(x′,R/2)c) ≥ c3/ log R

for some c3 > 0 independent of n, r,R for n large. Since ∂D(0, R)R/100 ⊆ ∪36
j=1D(xj, R/5),

combining (3.21) and (3.22) we see that

inf
x,x′∈∂D(0,R)R/100

P
x(Tx′ < TD(0,r+n4)) ≥ c4/ log R. (3.23)

It then follows from (2.13) that

inf
x,x′∈∂D(0,R)R/100

GD(0,r+n4)c(x, x′) (3.24)

= inf
x,x′∈∂D(0,R)R/100

P
x(Tx′ < TD(0,r+n4))GD(0,r+n4)c(x′, x′)

≥ (c4/ log R)GD(x′,R/2)(x
′, x′) ≥ c5 > 0

for some c5 > 0 independent of n, r,R for n large.

Using the strong Markov property, (3.24), and (2.72) we see that

inf
z∈D(0,1.01R)c , x∈∂D(0,R)R/100

GD(0,r+n4)c(z, x) (3.25)

≥ E
z[GD(0,r+n4)c(XTD(0,1.01R)

, x);XTD(0,1.01R)
∈ ∂D(0, R)R/100 ] ≥ c > 0.
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Together with (3.24) this completes the proof of (3.19).

We next observe that uniformly in x ∈ ∂D(0, R)n4 , z ∈ D(0, 2r) − D(0, 5r/4), by (3.19) and
(2.20),

GD(0,r+n4)c(x, z) = GD(0,r+n4)c(z, x) (3.26)

= E
z
{
GD(0,r+n4)c(XTD(0,R)c

, x) ; TD(0,R)c < TD(0,r+n4)

}

≥ cPz
{
TD(0,R)c < TD(0,r+n4)

}

≥ c/ log n.

Our final observation is that for any ǫ > 0, uniformly in x ∈ ∂D(0, R)n4 , z ∈ D(0, 2r)−D(0, r+
(1 + ǫ)n4),

GD(0,r+n4)c(x, z) ≥ c(R log R)−1. (3.27)

To see this, we first use the strong Markov property together with (3.23) to see that uniformly
in x, x′ ∈ ∂D(0, R)n4 and z ∈ D(0, 2r) − D(0, r + (1 + ǫ)n4),

GD(0,r+n4)c(x, z) ≥ P
x(Tx′ < TD(0,r+n4))GD(0,r+n4)c(x′, z) (3.28)

≥ cGD(0,r+n4)c(x′, z)/ log R.

In view of (2.38), if x′ ∈ ∂D(0, R)n4 is chosen as close as possible to the ray from the the origin
which passes through z

GD(0,r+n4)c(x′, z) ≥ GD(x′,|x′|−(r+n4))(x
′, z) ≥ cR−1. (3.29)

Combining the last two displays proves (3.27).

Lemma 3.2 (Exterior Harnack Inequality). Let en ≤ r = R/n3. Uniformly for x, x′ ∈
∂D(0, R)n4 and y ∈ ∂D(0, r)n4

HD(0,r+n4)(x, y) =
(
1 + O(n−3 log n)

)
HD(0,r+n4)(x

′, y). (3.30)

Furthermore, uniformly in x ∈ ∂D(0, R)n4 and y ∈ ∂D(0, r)n4 ,

P
x(XTD(0,r+n4)

= y ; TD(0,r+n4) < TD(0,n3R)c) (3.31)

=
(
1 + O(n−3 log n)

)
P

x(TD(0,r+n4) < TD(0,n3R)c)HD(0,r+n4)(x, y),

and uniformly in x, x′ ∈ ∂D(0, R)n4 and y ∈ ∂D(0, r)n4 ,

P
x(XTD(0,r+n4)

= y ; TD(0,r+n4) < TD(0,n3R)c) (3.32)

=
(
1 + O(n−3 log n)

)
P

x′
(XTD(0,r+n4)

= y ; TD(0,r+n4) < TD(0,n3R)c).

Proof of Lemma 3.2: For any x ∈ ∂D(0, R)n4 and y ∈ ∂D(0, r)n4 we have the last exit
decomposition

HD(0,r+n4)(x, y) =
∑

z∈D(0,5r/4)−D(0,r+n4)

GD(0,r+n4)c(x, z)p1(z, y)

+
∑

z∈D(0,2r)−D(0,5r/4)

GD(0,r+n4)c(x, z)p1(z, y)

+
∑

z∈Dc(0,2r)

GD(0,r+n4)c(x, z)p1(z, y). (3.33)
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Let us first show that uniformly in x, x′ ∈ ∂D(0, R)n4 and z ∈ D(0, 2r) − D(0, 5r/4)

GD(0,r+n4)c(x, z) =
(
1 + O(n−3 log n)

)
GD(0,r+n4)c(x′, z). (3.34)

To this end, note that by (2.3), uniformly in x, x′ ∈ ∂D(0, R)n4 and y ∈ D(0, 2r)

a(x − y) =
2

π
log |x − y| + k + O(|x − y|−1) (3.35)

=
2

π
log R + k + O(n−3)

= a(x′ − y) + O(n−3),

and with N ≥ n3R the same result applies with y ∈ D(0,N)c. Hence, by (2.8) applied to the
finite set A(r + n4, N) =: D(0, N) − D(0, r + n4), and using the fact that HA(r+n4,N)c(z, ·) is a
probability, we see that uniformly in x, x′ ∈ ∂D(0, R)n4 and z ∈ D(0, r + n4)c

GA(r+n4,N)(x, z) = GA(r+n4,N)(z, x) (3.36)

=





∑

y∈D(0,r+n4)∪D(0,N)c

HA(r+n4,N)c(z, y)a(y − x)



− a(z − x)

=





∑

y∈D(0,r+n4)∪D(0,N)c

HA(r+n4,N)c(z, y)a(y − x′)





−a(z − x′) + O(n−3)

= GA(r+n4,N)(z, x′) + O(n−3).

Since this is uniform in N ≥ n3R, using (2.67) we can apply the dominated convergence theorem
as N → ∞ to see that uniformly in x, x′ ∈ ∂D(0, R)n4 and z ∈ D(0, 2r)

GD(0,r+n4)c(x, z) = GD(0,r+n4)c(z, x′) + O(n−3). (3.37)

Applying (3.26) now establishes (3.34).

We show next that uniformly in x, x′ ∈ ∂D(0, R)n4 and z ∈ D(0, 5r/4) − D(0, r + n4)

GD(0,r+n4)c(x, z) =
(
1 + O(n−3 log n)

)
GD(0,r+n4)c(x′, z) + O(r−1−2β log r). (3.38)

To see this we use the strong Markov property together with (3.34) and (2.67) to see that

GD(0,r+n4)c(x, z) = GD(0,r+n4)c(z, x) (3.39)

= E
z
{
GD(0,r+n4)c(XD(0,5r/4)c , x) ; TD(0,5r/4)c < TD(0,r+n4)

}
,

and this in turn is bounded by

E
z
{
GD(0,r+n4)c(XD(0,5r/4)c , x) ; TD(0,5r/4)c < TD(0,r+n4) , |XD(0,5r/4)c | ≤ 2r

}

+E
z
{
GD(0,r+n4)c(XD(0,5r/4)c , x) ; TD(0,5r/4)c < TD(0,r+n2) , |XD(0,5r/4)c | > 2r

}

≤
(
1 + O(n−3 log n)

)
E

z
{
GD(0,r+n2)c(XD(0,5r/4)c , x′) ; TD(0,5r/4)c < TD(0,r+n4)

}

+c log(R) P
z
{
|XD(0,5r/4)c | > 2r

}
.
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Using (3.39) we see that

E
z
{
GD(0,r+n2)c(XD(0,5r/4)c , x′) ; TD(0,5r/4)c < TD(0,r+n4)

}
= GD(0,r+n4)c(x′, z).

As in (2.45), by using (2.19) and (2.1) we have

P
z
{
|XD(0,5r/4)c | > 2r

}
(3.40)

=
∑

|y|<5r/4

2r<|w|

GD(0,5r/4)(z, y)p1(y,w)

≤ c log r
∑

|y|<5r/4

P(|X1| ≥ 3r/4)

≤ c log r
∑

|y|<5r/4

1

|r|3+2β
≤ cr−1−2β log r.

This establishes (3.38).

We next show that ∑

z∈Dc(0,2r)

GD(0,r+n4)c(x, z)p1(z, y) = O(r−3−β). (3.41)

It follows from (2.67) that GD(0,r+n)c(x, z) = O(log R), so that the sum in (3.12) is bounded by
O(log R) times the probability of a jump of size greater than |z| − r − n ≥ r − n ≥ r/2, which
gives (3.41).

To prove (3.30) it thus suffices to show that uniformly in x ∈ ∂D(0, R)n4 and y ∈ ∂D(0, r)n4

r−1−2β log r ≤ cn−3HD(0,r+n4)(x, y). (3.42)

Using the last exit decomposition together with (3.27) we obtain

HD(0,r+n4)(x, y) =
∑

z∈D(0,r+n4)c

GD(0,r+n4)c(x, z)p1(z, y) (3.43)

≥ c(R log R)−1
∑

r+(1+ǫ)n4≤|z|≤2r

p1(z, y)

for any ǫ > 0. Note that the annulus {z | r+(1+ǫ)n4 ≤ |z| ≤ 2r} contains the disc D(v, 2(1+ǫ)n4)
where v = (r + 3(1 + ǫ)n4)y/|y|, and we have 2(1 + ǫ)n4 ≤ |y − v| ≤ 3(1 + ǫ)n4. Thus

∑

r+(1+ǫ)n4≤|z|≤2r

p1(z, y) ≥
∑

z∈D(v,2(1+ǫ)n4)

p1(z, y) (3.44)

=
∑

z∈D(v,2(1+ǫ)n4)

p1(z − v, y − v)

=
∑

z∈D(0,2(1+ǫ)n4)

p1(z, y − v).

Hence by (1.3) and our assumption that r ≥ en

HD(0,r+n4)(x, y) ≥ c(R log R)−1e−(1+ǫ)1/4βn ≥ cr−1−ǫ−(1+ǫ)1/4β, (3.45)

and thus (3.42), and hence (3.30), follows by taking ǫ small.

The rest of Lemma 3.2 follows as in the proof of Lemma 3.1.
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4 Local time estimates and upper bounds

The following simple lemma, the analog of (11, Lemma 2.1), will be used repeatedly.

Lemma 4.1. For |x0| < R,

E
x0(L0

TD(0,R)c
) = GD(0,R)(x0, 0). (4.1)

For all z ≥ 1
P

x0(L0
TD(0,R)c

≥ zGD(0,R)(0, 0)) ≤ c
√

ze−z (4.2)

for some c < ∞ independent of x0, z,R.

Let x0 6= 0. Let 0 < ϕ ≤ 1 and set λ = ϕ/GD(0,R)(0, 0). Then

E
x0

(
e
−λL0

TD(0,R)c

)
(4.3)

= 1 −
log( R

|x0|
) + O(|x0|−1/4)

log(R)

ϕ

1 + ϕ

(
1 + O(

1

log(|x0|)
)

)

Proof of Lemma 4.1: Since

L0
TD(0,R)c

=
∑

i<TD(0,R)c

1{Xi=0}, (4.4)

(4.1) follows from (2.4). Then we have by the strong Markov property that

E
x0(L0

TD(0,R)c
)k = k!Ex0




∑

0≤j1≤···≤jk≤TD(0,R)c

k∏

i=1

1{Xji
=0}




= k!Ex0




∑

0≤j1≤···≤jk−1≤TD(0,R)c

k−1∏

i=1

1{Xji
=0}GD(0,R)(0, 0)




= kE
x0(L0

TD(0,R)c
)k−1GD(0,R)(0, 0). ,

By induction on k,

E
x0(L0

TD(0,R)c
)k = k!GD(0,R)(x0, 0)(GD(0,R)(0, 0))

k−1. (4.5)

To prove (4.2), use (4.5), (2.17) and Chebyshev to obtain

P
x0(L0

TD(0,R)c
≥ zGD(0,R)(0, 0)) ≤

k!

zk
(4.6)

then take k = [z] and use Stirling’s formula.

For (4.3), note that, conditional on hitting 0, L0
TD(0,R)c

is a geometric random variable with mean

GD(0,R)(0, 0). Hence,

E
x0

(
e
−λL0

TD(0,R)c

)

= 1 − P
x0
(
T0 < TD(0,R)c

)

+P
x0
(
T0 < TD(0,R)c

)( 1

(eλ − 1)GD(0,R)(0, 0) + 1

)
. (4.7)
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Since by (2.13)
1

GD(0,R)(0, 0)
= O(1/ log(R)) (4.8)

we have

(eλ − 1)GD(0,R)(0, 0) + 1 = 1 + ϕ + O
( 1

log(R)

)
(4.9)

and (4.3) then follows from (4.7) and (2.16).

We next provide the required upper bounds in Theorem 1.2. Namely, we will show that for any
a ∈ (0, 2]

lim sup
m→∞

log
∣∣∣
{
x ∈ D(0,m) : Lx

TD(0,m)c
≥ (2a/π)(log m)2

}∣∣∣
log m

≤ 2 − a a.s. (4.10)

To see this fix γ > 0 and note that by (4.2) and (2.13), for some 0 < δ < γ, all x ∈ D(0,m) and
all large enough m

P
0

(
Lx

TD(x,2m)c

(log m)2
≥ 2a/π

)
≤ m−a+δ (4.11)

Therefore

P
0

(∣∣∣
{

x ∈ D(0,m) :
Lx

TD(0,m)c

(log m)2
≥ 2a/π

}∣∣∣ ≥ m2−a+γ

)
(4.12)

≤ m−(2−a)−γ
E

0

(∣∣∣
{
x ∈ D(0,m) :

Lx
TD(0,m)c

(log m)2
≥ 2a/π

}∣∣∣
)

= m−(2−a)−γ
∑

x∈D(0,m)

P
0

(
Lx

TD(0,m)c

(log m)2
≥ 2a/π

)

≤ m−(2−a)−γ
∑

x∈D(0,m)

P
0

(
Lx

TD(x,2m)c

(log m)2
≥ 2a/π

)

≤ m−(γ−δ).

Now apply our result to m = mn = en to see by Borel-Cantelli that for some N(ω) < ∞ a.s. we
have that for all n ≥ N(ω)

∣∣∣
{

x ∈ D(0, en) :
Lx

TD(0,en)c

(log en)2
≥ 2a/π

}∣∣∣ ≤ e(2−a+γ)n. (4.13)
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Then if en ≤ m ≤ en+1

∣∣∣
{

x ∈ D(0,m) :
Lx

TD(0,m)c

(log m)2
≥ 2a/π

}∣∣∣ (4.14)

≤
∣∣∣
{
x ∈ D(0, en+1) :

Lx
TD(0,en+1)c

(log en)2
≥ 2a/π

}∣∣∣

=
∣∣∣
{
x ∈ D(0, en+1) :

Lx
TD(0,en+1)c

(log en+1)2
≥ 2a(1 + 1/n)−2/π

}∣∣∣

≤ e(2−a(1+1/n)−2+γ)(n+1) ≤ m(2−a(1+1/n)−2+γ)(n+1)/n.

(4.10) now follows by first letting n → ∞ and then letting γ → 0.

5 Lower bounds for probabilities

Fixing a < 2, we prove in this section

lim inf
m→∞

log
∣∣∣
{
x ∈ D(0,m) : Lx

TD(0,m)c
≥ (2a/π)(log m)2

}∣∣∣
log m

≥ 2 − a a.s. (5.1)

In view of (4.10), we will obtain Theorem 1.2 .

We start by constructing a subset of the set appearing in (5.1), the probability of which is
easier to bound below. To this end fix n, and let rn,k = enn3(n−k), k = 0, . . . , n. In particular,
rn,n = en and rn,0 = enn3n. Set Kn = 16rn,0 = 16enn3n.

Let Un = [2rn,0, 3rn,0]
2 ⊆ D(0,Kn). For x ∈ Un, consider the x-bands ∂D(x, rn,k)n4 ; k =

0, . . . , n. We use the abbreviation r′n,k = rn,k + n4. For x ∈ Un we will say that the path does
not skip x-bands if

(1) TD(x,r′n,0) < TD(0,Kn)c and TD(x,r′n,0)
= T∂D(x,rn,0)n4

.

(2) For any t < TD(0,Kn)c such that Xt ∈ ∂D(x, rn,k)n4 we have:

(2′) if k = 0 then

(
TD(x,r′n,1)

∧ TD(0,Kn)c

)
◦ θt =

(
T∂D(x,rn,1)n4

∧ TD(0,Kn)c

)
◦ θt,

(2′′) if k = 1, . . . , n − 1 then

(
TD(x,r′n,k+1)

∧ TD(x,rn,k−1)c

)
◦ θt =

(
T∂D(x,rn,k+1)n4

∧ T∂D(x,rn,k−1)n4

)
◦ θt,

(2′′′) if k = n then (
TD(x,rn,n−1)c

)
◦ θt =

(
T∂D(x,rn,n−1)n4

)
◦ θt.
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For x ∈ D(0,Kn), let Nx
n,k denote the number of excursions from D(x, rn,k−1)

c to D(x, r′n,k)

until time TD(0,Kn)c . Set Nk = 3ak2 log k, and k0 = 4 ∨ inf{k |Nk ≥ 2k}. We will say that a
point x ∈ Un is n-successful if the path does not skip x-bands, Nx

n,k = 1 , ∀k = 1, . . . , k0 − 1
and

Nk − k ≤ Nx
n,k ≤ Nk + k ∀k = k0, . . . , n. (5.2)

Let {Y (n, x) ; x ∈ Un} be the collection of random variables defined by

Y (n, x) = 1 if x is n-successful

and Y (n, x) = 0 otherwise. Set q̄n,x = P(Y (n, x) = 1) = E(Y (n, x)).

The next lemma relates the notion of n-successful and local times. As usual we write log2 n for
log log n.

Lemma 5.1. Let
Sn = {x ∈ Un |x is n-successful}.

Then for some N(ω) < ∞ a.s., for all n ≥ N(ω) and all x ∈ Sn

Lx
TD(0,Kn)c

(log Kn)2
≥ 2a/π − 2/ log2 n.

Proof of Lemma 5.1: Recall that if x is n-successful then Nx
n,n ≥ Nn−n = a(3n2 log n)−n. Let

Lx,j denote the number of visits to x during the jth excursion from ∂D(x, rn,n)n4 to D(x, rn,n−1)
c.

Then for any 0 < λ < ∞

Px := P

(
Lx

TD(0,Kn)c
≤ (2a/π − 2/ log2 n)(log Kn)2 , x ∈ Sn

)

≤ P




Nn−n∑

j=0

Lx,j ≤ (2a/π − 1/ log2 n)(3n log n)2




≤ exp
(
λ(2a/π − 1/ log2 n)(3n log n)2

)
E
(
e−λ

PNn−n
j=0 Lx,j

)
. (5.3)

If τ denotes the first time that the (Nn−n)th excursion from D(x, rn,n−1)
c reaches ∂D(x, rn,n)n4

then by the strong Markov property

E

(
e−λ

PNn−n
j=0 Lx,j

)
(5.4)

= E

(
e−λ

PNn−n−1
j=0 Lx,j

E
Xτ

(
e
−λLx

TD(x,rn,n−1)c

))
.

Set λ = φ/GD(x,rn,n−1)(x, x). By (4.3), with r = rn,n = en, R = rn,n−1 = n3en, for any 0 < φ ≤ 1
and large n

sup
y∈∂D(x,rn,n)n4

E
y

(
e
−λLx

TD(x,rn,n−1)c

)
≤ exp

(
−(1 − 1/2 log n)φ

1 + φ
3(log n)/n

)
. (5.5)

Hence by induction

E

(
e−λ

PNn−n
j=0 Lx,j

)
≤ exp

(
−(1 − 1/ log n)φ

1 + φ
9an(log n)2

)
. (5.6)
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Then with this choice of λ, noting that GD(x,rn,n−1)(x, x) ∼ 2
πn by (2.13), we have

Px ≤ inf
φ>0

exp

({
φ(1 − 1/2 log2 n) − (1 − 1/ log n)φ

1 + φ

}
9an(log n)2

)
. (5.7)

A straightforward computation shows that

inf
φ>0

(
φα − φ

1 + φ
β

)
= −

(√
β −√

α
)2

(5.8)

which is achieved for φ =
√

β/
√

α − 1. Using this in (5.7) we find that

Px ≤ exp
(
−cn(log n/ log2 n)2

)
. (5.9)

Note that |Un| ≤ ecn log n. Summing over all x ∈ Un and then over n and applying Borel-Cantelli
will then complete the proof of Lemma 5.1.

The next lemma, which provides estimates for the first and second moments of Y (n, x), will be
proved in the following sections. Recall q̄n,x = P(x is n-successful). Let Qn = infx∈Un q̄n,x.

Lemma 5.2. There exists δn → 0 such that for all n ≥ 1,

Qn ≥ K−(a+δn)
n , (5.10)

and
Qn ≥ cq̄n,x (5.11)

for some c > 0 and all n and x ∈ Un.

There exists C < ∞ and δ′n → 0 such that for all n, x 6= y and l(x, y) = min{m : D(x, rn,m) ∩
D(y, rn,m) = ∅} ≤ n

E(Y (n, x)Y (n, y)) ≤ CQ2
n(l(x, y)!)

3a+δ′
l(x,y) . (5.12)

Remark. Immediately following this remark we give a relatively quick proof of our main
results, Theorem 1.2 and Theorem 1.1. It may be helpful at this point to give a short heuristic
overview of the proof of Lemma 5.2. (5.10) and (5.11) are proven in Section 6. There we use
estimates (2.49) and (2.66) on the probability of excursions between bands at level k − 1 and
k to show that the probability of making between Nk − k and Nk + k such excursions is about
k−3a, so that the the probability of making that many excursions for each k = 1, . . . , n is about

(n!)−3a ≈ K
−(a+δn)
n . The lower bound (5.12) is proven in Sections 7 and 8. Since we only require

a lower bound it suffices to bound the probability that we have the right number of excursions
at all levels around x and at levels k = l(x, y)+3, . . . , n around y. We choose l(x, y) so that none
of the bands at levels k = l(x, y)+3, . . . , n around y intersect any of the bands around x. If this
implied that the excursion counts around x and y were independent, the heuristic mentioned for
obtaining (5.10) and (5.11) would give (5.12). It is here that the Harnack inequalities of Section
3 come in. The only way that excursions around y can have an effect on excursion counts around
x is by influencing the initial and final points of the x-excursions. Our Harnack inequalities show
that such an effect is negligible. The reader might find it useful to compare the proof given here
with the one in (11).
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Proof of Theorem 1.2. In view of (4.10) we need only consider the lower bound. To prove
(5.1) we will show that for any δ > 0 we can find p0 > 0 and N0 < ∞ such that

P
0

(
∑

x∈Un

1{Y (n,x)=1} ≥ K2−a−δ
n

)
≥ p0 (5.13)

for all n ≥ N0. Lemma 5.1 will then imply that for some p1 > 0 and N1 < ∞

P
0
(∣∣∣
{
x ∈ D(0,Kn) : Lx

TD(0,Kn)c
≥ (2a/π − 2/ log2 n)(log Kn)2

}∣∣∣ ≥ K2−a−δ
n

)
≥ p1. (5.14)

for all n ≥ N1. As in the proof of (4.10) and readjusting δ > 0 we can find p2 > 0 and N2 < ∞
such that

P
0
(∣∣∣
{
x ∈ D(0, n) : Lx

TD(0,n)c
≥ (2a/π)(log n)2

}∣∣∣ ≥ n2−a−δ
)
≥ p2 (5.15)

for all n ≥ N2. Then by Lemma 9.4, with a further readjustment of δ > 0 we will have that

P
0
(∣∣∣
{
x ∈ Z

2 : Lx
n ≥ (a/2π)(log n)2

}∣∣∣ ≥ n1−a/2−δ
)
≥ p3 (5.16)

for some p3 > 0 and all n ≥ N3 with N3 < ∞. This estimate leads to (5.1) as in the proof of
Theorem 5.1 of (4).

Recall the Paley-Zygmund inequality (see (7, page 8)): for any W ∈ L2(Ω) and 0 < λ < 1

P(W ≥ λE(W )) ≥ (1 − λ)2
(E(W ))2

E(W 2)
. (5.17)

We will apply this with W = Wn =
∑

x∈Un
1{Y (n,x)=1}. We see by (5.10) of Lemma 5.2 that for

some sequence δn → 0

E

(
∑

x∈Un

1{Y (n,x)=1}

)
=
∑

x∈Un

q̄n,x ≥ K2−a−δn
n . (5.18)

Thus to complete the proof of (5.13) it suffices to show

E



{
∑

x∈Un

1{Y (n,x)=1}

}2

 ≤ c

{
E

(
∑

x∈Un

1{Y (n,x)=1}

)}2

(5.19)

for some c < ∞ all n sufficiently large. Furthermore, using (5.18) it suffices to show that

E



∑

x,y∈Un
x 6=y

1{Y (n,x)=1}1{Y (n,y)=1}


 ≤ c

{
E

(
∑

x∈Un

1{Y (n,x)=1}

)}2

(5.20)

We let Cm denote generic finite constants that are independent of n. The definition of l(x, y) ≥ 1
implies that |x − y| ≤ 2rn,l(x,y)−1. Recall that because n ≥ l, there are at most C0r

2
n,l−1 ≤
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C0K
2
n/n6(l−1) ≤ C0K

2
n l6(l!)−6 points y in the ball of radius 2rn,l−1 centered at x. Thus it

follows from Lemma 5.2 that
∑

x,y∈Un
2rn,n≤|x−y|≤2rn,0

E (Y (n, x)Y (n, y)) (5.21)

≤ C1

∑

x,y∈Un
2rn,n≤|x−y|≤2rn,0

Q2
n(l(x, y)!)

3a+δ′
l(x,y)

≤ C2Q
2
n

∑

x∈Un

n∑

j=1

∑

{y | l(x,y)=j}

(j!)3a+δ′j

≤ C3Q
2
nK2

n

n∑

j=1

K2
n j6(j!)−6(j!)3a+δ′j

≤ C4(K
2
nQn)2

n∑

j=1

j6(j!)−3(2−a)+δ′j

≤ C5(K
2
nQn)2 ≤ C6

{
E

(
∑

x∈Un

Y (n, x)

)}2

where we used the fact which follows from the definitions that

K2
nQn ≤ c

∑

x∈Un

q̄n,x = cE

(
∑

x∈Un

Y (n, x)

)
. (5.22)

Because Y (n, x) ≤ 1 and EY (n, x) = q̄n,y ≤ cQn, we have

∑

x,y∈Un
|x−y|≤2rn,n

E (Y (n, x)Y (n, y)) ≤
∑

x,y∈Un
|x−y|≤2rn,n

E (Y (n, y)) (5.23)

≤ C7

∑

x ; |x|≤2rn,n

K2
nQn ≤ C8 e2nK2

nQn.

By (5.10)
K2

nQn ≥ K2−a−δn
n ≥ ce2n.

This and (5.22) show that the right hand side of (5.23) is bounded by

C9

{
E

(
∑

x∈Un

Y (n, x)

)}2

. (5.24)

We know that if x, y ∈ Un, then |x − y| ≤ 2rn,0. Thus combining (5.21), (5.23), and (5.24)
completes the proof of (5.20) and hence of (5.1).

Proof of Theorem 1.1. The lower bound is an immediate consequence of Theorem 1.2. The
upper bound is a consequence of (4.2) as follows; cf. the proof of (4, (2.8)). Let δ > 0. By (2.13)
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and (4.2)

P
0( sup

x∈D(0,R)
Lx

TD(0,R)c
>

4

π
(1 + δ) log2 R) (5.25)

≤
∑

x∈D(0,R)

P
0(Lx

TD(x,2R)c
>

4

π
(1 + δ) log2 R)

≤ cR2((1 + 2δ) log R)1/2e−2(1+δ/2) log R ≤ cR−δ/4

for R large. By Borel-Cantelli there exists M0(ω) such that if m ≥ M0, then

L∗
TD(0,2m)c

≤ 4

π
(1 + δ) log2(2m).

If m ≥ M0, 2m ≤ n ≤ 2m+1, and m is large,

L∗
TD(0,n)c

≤ L∗
TD(0,2m+1)c

≤ 4

π
(1 + δ) log2(2m+1) ≤ 4

π
(1 + 2δ) log2 n.

Since δ is arbitrary, this and Lemma 9.4 prove the upper bound.

6 First moment estimates

Proof of (5.10) and (5.11): For x ∈ Un we begin by getting bounds on the probability that
TD(x,r′n,0) < TD(0,Kn)c and TD(x,r′n,0) = T∂D(x,rn,0)n4

. Since

P

(
TD(x,r′n,0) < TD(0,Kn)c ; TD(x,r′n,0) = T∂D(x,rn,0)n4

)
(6.1)

≥ P

(
TD(x,r′n,0) < TD(x, 1

2
Kn)c ; TD(x,r′n,0)

= T∂D(x,rn,0)n4

)

we see from (2.66) that uniformly in n and x ∈ Un

P

(
TD(x,r′n,0) < TD(0,Kn)c ; TD(x,r′n,0) = T∂D(x,rn,0)n4

)
≥ c (6.2)

for some c > 0. And since for x ∈ Un and y ∈ ∂D(x, rn,0)n4

P
y
(
TD(x,r′n,1)

< TD(x, 1
2
Kn)c ; TD(x,r′n,1) = T∂D(x,rn,1)n4

)
(6.3)

≤ P
y
(
TD(x,r′n,1)

< TD(0,Kn)c ; TD(x,r′n,1)
= T∂D(x,rn,1)n4

)

≤ P
y
(
TD(x,r′n,1)

< TD(x,2Kn)c ; TD(x,r′n,1) = T∂D(x,rn,1)n4

)

we see from (2.66) that uniformly in n, x ∈ Un and y ∈ ∂D(x, rn,0)n4

c/ log n ≤ P
y
(
TD(x,r′n,1) < TD(0,Kn)c ; TD(x,r′n,1)

= T∂D(x,rn,1)n4

)
≤ c′/ log n. (6.4)

Similarly, since for x ∈ Un and y ∈ ∂D(x, rn,0)n4

P
y
(
TD(0,Kn)c < TD(x,r′n,1)

)
≥ P

y
(
TD(x,2Kn)c < TD(x,r′n,1)

)
(6.5)

30



we see from (2.49) that uniformly in n, x ∈ Un and y ∈ ∂D(x, rn,0)n4

P
y
(
TD(0,Kn)c < TD(x,r′n,1)

)
≥ c > 0. (6.6)

These bounds will be used for excursions at the ‘top’ levels. To bound excursions at ‘intermedi-
ate’ levels we note that using (2.49), we have uniformly for x ∈ ∂D(0, rn,l)n4 , with 1 ≤ l ≤ n− 1

P
x
(
TD(0,rn,l−1)c < TD(0,r′n,l+1) ; TD(0,rn,l−1)c = T∂D(0,rn,l−1)n4

)
(6.7)

= 1/2 + O(n−4−4β),

and using (2.66), we have uniformly for x ∈ ∂D(0, rn,l)n4 , with 1 ≤ l ≤ n − 1

P
x
(
TD(0,r′n,l+1) < TD(0,rn,l−1)c ; TD(0,r′n,l+1)

= T∂D(0,rn,l+1)n4

)
(6.8)

= 1/2 + O(n−4−4β).

For excursions at the ‘bottom’ level, let us note, using an analysis similar to that of (2.43), that
uniformly in z ∈ D(0, rn,n)n4

P
z
(
TD(0,rn,n−1)c = T∂D(0,rn,n−1)n4

)
= 1 + O(n−4−4β). (6.9)

Let m̄ = (m2,m3, . . . ,mn) and set |m̄| = 2
∑n

j=2 mj + 1. Let Hn(m̄), be the collection of maps,
(‘histories’),

ϕ : {0, 1, . . . , |m̄|} 7→ {0, 1, . . . , n}
such that ϕ(0) = 1, ϕ(j + 1) = ϕ(j) ± 1, |m̄| = inf{j ; ϕ(j) = 0} and the number of upcrossings
from ℓ − 1 to ℓ

u(ℓ) =: |{(j, j + 1) | (ϕ(j), ϕ(j + 1)) = (ℓ − 1, ℓ)}| = mℓ.

Note that we cannot have any upcrossings from ℓ to ℓ + 1 until we have first had an upcrossing
from ℓ − 1 to ℓ. Hence the number of ways to partition the u(ℓ + 1) upcrossings from ℓ to ℓ + 1
among and after the u(ℓ) upcrossings from ℓ − 1 to ℓ is the same as the number of ways to
partition u(ℓ + 1) indistinguishable objects into u(ℓ) parts, which is

(
u(ℓ + 1) + u(ℓ) − 1

u(ℓ) − 1

)
. (6.10)

Since u(ℓ) = mℓ and the mapping ϕ is completely determined once we know the relative order
of all its upcrossings

|Hn(m̄)| =

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)
. (6.11)

What we do next is estimate the probabilities of all possible orderings of visits to {∂D(x, rn,j)n4 :
j = 0, . . . , n}. Let Ωx,n denote the set of random walk paths which do not skip x-bands until
completion of the first excursion from ∂D(x, rn,1)n4 to ∂D(x, rn,0)n4 . To each random walk
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path ω ∈ Ωx,n we assign a ‘history’ h(ω) as follows. Let τ(0) be the time of the first visit to
∂D(x, rn,1)n4 , and define τ(1), τ(2), . . . to be the successive hitting times of different elements of

{∂D(x, rn,0)n4 , . . . , ∂D(x, rn,n)n4}

until the first downcrossing from ∂D(x, rn,1)n4 to ∂D(x, rn,0)n4 . Setting Φ(y) = k if y ∈
∂D(x, rn,k)n4 , let h(ω)(j) = Φ(ω(τ(j))). Let h|k be the restriction of h to {0, . . . , k}. We
claim that uniformly for any ϕ ∈ Hn(m̄) and z ∈ ∂D(x, rn,1)n4

P
z
{
h||m̄|

= ϕ ; Ωx,n

}
=

(
1

2

)|m̄|−mn {
1 + O(n−4−4β)

}|m̄|
. (6.12)

To see this, simply use the strong Markov property successively at the times

τ(0), τ(1), . . . , τ(|m̄| − 1)

and then use (6.7)-(6.9).

Writing m
k∼ Nk if m = 1 for k < k0 and |m − Nk| ≤ k for k ≥ k0 we see that uniformly in

mn
n∼ Nn we have that

{
1 + O(n−4−4β)

}|m̄|
= 1 + O(n−1−3β). Combining this with (6.11) and

(6.12) we see that uniformly in z ∈ ∂D(x, rn,1)n4

∑

m2,...,mn

mℓ
ℓ
∼Nℓ

P
z
{
h||m̄|

∈ Hn(m̄) ; Ωx,n

}
(6.13)

= (1 + O(n−1−3β))
∑

m2,...,mn

mℓ
ℓ
∼Nℓ

(
1

2

)|m̄|−mn n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)

= (1 + O(n−1−3β))
1

4

∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)(
1

2

)mℓ+1+mℓ

.

Here we used the fact that m2 = 1 so that |m̄| − mn = 2 +
∑n−1

ℓ=2 (mℓ+1 + mℓ).

Lemma 6.1. For some C = C(a) < ∞ and all k ≥ 2, |m −Nk+1| ≤ k + 1, |ℓ + 1 −Nk| ≤ k,

C−1k−3a−1

√
log k

≤
(

m + ℓ

ℓ

)(
1

2

)m+ℓ+1

≤ Ck−3a−1

√
log k

. (6.14)

Proof of Lemma 6.1: It suffices to consider k ≫ 1 in which case the binomial coefficient in
(6.14) is well approximated by Stirling’s formula

m! =
√

2πmme−m√
m(1 + o(1)) .

With Nk = 3ak2 log k it follows that for some C1 < ∞ and all k large enough, if |m−Nk+1| ≤ 2k,
|ℓ −Nk| ≤ 2k then

|m
ℓ
− 1 − 2

k
| ≤ C1

k log k
. (6.15)
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Hereafter, we use the notation f ∼ g if f/g is bounded and bounded away from zero as k → ∞,
uniformly in {m : |m − Nk+1| ≤ 2k} and {ℓ : |ℓ − Nk| ≤ 2k}. We then have by the preceding
observations that

(
m + ℓ

ℓ

)(
1

2

)m+ℓ+1

∼ (m + ℓ)m+ℓ

√
ℓ ℓℓmm

(
1

2

)m+ℓ

∼ exp(−ℓI(m
ℓ ))√

k2 log k
, (6.16)

where
I(λ) = −(1 + λ) log(1 + λ) + λ log λ + λ log 2 + log 2 .

The function I(λ) and its first order derivative vanishes at 1, with the second derivative Iλλ(1) =
1/2. Thus, by a Taylor expansion to second order of I(λ) at 1, the estimate (6.15) results with

|I(
m

ℓ
) − 1

k2
| ≤ C2

k2 log k
(6.17)

for some C2 < ∞, all k large enough and m, ℓ in the range considered here. Since |ℓ−3ak2 log k| ≤
2k, combining (6.16) and (6.17) we establish (6.14).

Using the last Lemma we have that

∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

C−1ℓ−3a−1

√
log ℓ

≤
∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)(
1

2

)mℓ+1+mℓ

(6.18)

≤
∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

Cℓ−3a−1

√
log ℓ

.

Using the fact that |{mℓ |mℓ
ℓ∼ Nℓ}| = 2ℓ + 1, this shows that for some C1 < ∞,

n
n−1∏

ℓ=2

C−1
1 ℓ−3a

√
log ℓ

≤
∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)(
1

2

)mℓ+1+mℓ

(6.19)

≤ n

n−1∏

ℓ=2

C1ℓ
−3a

√
log ℓ

.

Since for any c < ∞, for some ζn, ζ ′n → 0

ncn
n−1∏

ℓ=2

log ℓ = nnζn = (n!)ζ
′
n (6.20)
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we see that for some δ1,n, δ2,n → 0

∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)(
1

2

)mℓ+1+mℓ

= (n!)−3a−δ1,n = r
−a−δ2,n

n,0 . (6.21)

(6.2)-(6.6) and (6.13) show that for some 0 < c, c′ < ∞

c

log n

∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)(
1

2

)mℓ+1+mℓ

(6.22)

≤ Qn = inf
x∈Un

P(x is n-successful) ≤ sup
x∈Un

P(x is n-successful)

≤ c′

log n

∑

m2,...,mn

mℓ
ℓ
∼Nℓ

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)(
1

2

)mℓ+1+mℓ

.

Together with (6.21) this gives (5.10) and (5.11).

In the remainder of this section we prove two lemmas needed to complete the proof of Lemma
5.2.

Let Ωi−1,...,j
x,n,i,m denote the set of random walk paths which do not skip x-bands on excursions

between levels k = i − 1, i, . . . , j until completion of the first m excursions from D(x, r′n,i) to
D(x, rn,i−1)

c and let Nx
n,i,m,k denote the number of excursions from D(x, rn,k−1)

c to D(x, r′n,k)
until completion of the first m excursions from D(x, r′n,i) to D(x, rn,i−1)

c.

Lemma 6.2. We can find C < ∞ and δ3,l → 0 such that for all n and 1 ≤ l < n,

∑

ml,...,mn

mk
k
∼Nk

P

(
Nx

n,k = mk, k = l + 1, . . . , n ; Ωl−1,...,n
x,n,l,ml

|Nx
n,l = ml

)
(6.23)

≤ C Qn (l!)3a+δ3,l .

Proof of Lemma 6.2: The analysis of this section shows that uniformly in mk
k∼ Nk, k =

l, l + 1, . . . , n and z ∈ ∂D(x, rn,l)n4

P
z
(
Nx

n,l,ml,k
= mk, k = l + 1, . . . , n ; Ωl−1,...,n

x,n,l,ml

)
(6.24)

= (1 + O(n−2β))

n−1∏

k=l

(
mk+1 + mk − 1

mk − 1

)(
1

2

)mk+1+mk

.

Our analysis also shows that for some δ3,l → 0

inf
ml

ml
l
∼Nl




∑

m2,...,ml−1

mj
j
∼Nj

l−1∏

k=2

(
mk+1 + mk − 1

mk − 1

)(
1

2

)mk+1+mk


 ≥ ((l − 1)!)−3a−δ3,l , (6.25)

34



and since

∑

m2,...,mn

mj
j
∼Nj

n−1∏

ℓ=2

(
mℓ+1 + mℓ − 1

mℓ − 1

)(
1

2

)mℓ+1+mℓ

(6.26)

≥
∑

ml,...,mn

mj
j
∼Nj

n−1∏

k=l

(
mk+1 + mk − 1

mk − 1

)(
1

2

)mk+1+mk

inf
ml

mℓ
ℓ
∼Nℓ




∑

m2,...,ml−1

mj
j
∼Nj

l−1∏

k=2

(
mk+1 + mk − 1

mk − 1

)(
1

2

)mk+1+mk


 ,

where we used the fact that for C(i, j),D(i, j) non-negative, we have

∑

i,j,k

C(i, j)D(j, k) =
∑

j

∑

i

C(i, j)
∑

k

D(j, k) ≥



∑

i,j

C(i, j)


 inf

j

∑

k

D(j, k),

we see from (6.24) and (6.22) that uniformly in z ∈ ∂D(x, rn,l)n4

∑

ml,...,mn

mk
k
∼Nk

P
z
(
Nx

n,l,ml,k
= mk, k = l + 1, . . . , n ; Ωl−1,...,n

x,n,l,ml

)
≤ C log n Qn (l!)3a+δ3,l . (6.27)

As in (6.4) we have that uniformly in n and x ∈ Un

P

(
TD(x,r′n,l)

< TD(0,Kn)c ; TD(x,r′n,l)
= T∂D(x,rn,l)n4

)
≤ c′/l log n (6.28)

so that by readjusting δ3,l

∑

ml,...,mn

mk
k
∼Nk

P

(
Nx

n,l,ml,k
= mk, k = l + 1, . . . , n ; Ωl−1,...,n

x,n,l,ml

)
≤ C Qn (l!)3a+δ3,l , (6.29)

and (6.23) follows.

Lemma 6.3. For some C < ∞ and δ3,l → 0

∑

m2,...,ml

mk
k
∼Nk

P

(
Nx

n,k = mk, k = 2, . . . , l ; Ω1,...,l
x,n,1,1

)
≤ C (l!)−3a+δ3,l . (6.30)

Proof of Lemma 6.3: As before, uniformly in mk
k∼ Nk, k = 2, 3, . . . , l and z ∈ ∂D(x, rn,1)n4

P
z
(
Nx

n,1,1,k = mk, k = 2, . . . , l ; Ω1,...,l
x,n,1,1

)
(6.31)

= (1 + O(n−2β))

l−1∏

k=2

(
mk+1 + mk − 1

mk − 1

)(
1

2

)mk+1+mk

.
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Using (6.14) as before, we obtain (6.30).

7 Second moment estimates

We begin by defining the σ-algebra Gx
n,l of excursions from D(x, rn,l−1)

c to D(x, r′n,l). To this

end, fix x ∈ Z
2, let τ0 = 0 and for i = 1, 2, . . . define

τi = inf{k ≥ τ i−1 : Xk ∈ D(x, r′n,l)} ,

τ i = inf{k ≥ τi : Xk ∈ D(x, rn,l−1)
c}.

Then Gx
n,l is the σ-algebra generated by the excursions {e(j), j = 1, . . .}, where e(j) = {Xk :

τ j−1 ≤ k ≤ τj} is the j-th excursion from D(x, rn,l−1)
c to D(x, r′n,l) (so for j = 1 we do begin

at t = 0).

The following Lemma is proved in the next section. Recall that for any σ-algebra G and event
B ∈ G, we have P(A ∩ B | G) = P(A | G)1{B}.

Lemma 7.1 (Decoupling Lemma). Let

Γy
n,l = {Ny

n,i = mi; i = l + 1, . . . , n} ∩ Ωl−1,··· ,n
x,n,l,ml

.

Then, uniformly over all l ≤ n, ml
l∼ Nl, {mi : i = l, . . . , n}, y ∈ Un,

P(Γy
n,l , Ny

n,l = ml | Gy
n,l) (7.1)

= (1 + O(n−1/2))P(Γy
n,l |N

y
n,l = ml)1{Ny

n,l=ml}

Remark 1. The intuition behind the Decoupling Lemma is that what happens ‘deep inside’
D(y, r′n,l), e.g., Γy

n,l, is ‘almost’ independent of what happens outside D(y, r′n,l), i.e., Gy
n,l.

Proof of (5.12): Recall that Nk = 3ak2 log k and that we write m
k∼ Nk if m = 1 for k < k0

and |m − Nk| ≤ k for k ≥ k0. Relying upon the first moment estimates and Lemma 7.1, we
next prove the second moment estimates (5.12). Take x, y ∈ Un with l(x, y) = l − 1. Thus
2rn,l−1 +2 ≤ |x−y| < 2rn,l−2 +2 for some 2 ≤ l ≤ n. Since rn,l−3−rn,l−2 ≫ 2rn,l−1, it is easy to
see that ∂D(y, rn,l−1)n4 ∩∂D(x, rn,k)n4 = ∅ for all k 6= l−2. Replacing hereafter l by l∧ (n−3),

it follows that for k 6= l − 1, l − 2, the events {Nx
n,k

k∼ Nk} are measurable with respect to the

σ-algebra Gy
n,l.

We write
Γy

n,l(ml, . . . ,mn) = {Ny
n,i = mi; i = l + 1, . . . , n} ∩ Ωl−1,··· ,n

x,n,l,ml

to emphasize the dependence on ml, . . . ,mn. With Jl := {l + 1, . . . , n} set

Γ̃y
n(Jl,ml) =

⋃

mk
k
∼Nk ; k∈Jl

Γy
n,l(ml, . . . ,mn)
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Similarly, with Ml−3 := {2, . . . , l − 3} set

Γ̃x
n(Ml−3) = {Nx

n,k
k∼ Nk, k ∈ Ml−3} ∩ Ω1,...,l−3

x,n,1,1 ,

and with Il := {2, . . . , l − 3, l, . . . , n} set

Γ̄x
n(Il) =

⋃

m′
l

l
∼Nl

Γ̃x
n(Jl,m

′
l) ∩ {Nx

n,l = m′
l} ∩ Γ̃x

n(Ml−3).

Using the previous paragraph we can check that Γ̄x
n(Il) ∈ Gy

n,l. Note that

{x, y are n-successful} (7.2)

⊆
⋃

ml
l
∼Nl

{
Γ̄x

n(Il)
⋂

Γ̃y
n(Jl,ml)

⋂
{Ny

n,l = ml}
}

.

Applying (7.1), we have that for some universal constant C3 < ∞,

P (x and y are n-successful) (7.3)

≤
∑

ml
l
∼nl

E

[
P(Γ̃y

n(Jl,ml) ,Ny
n,l = ml

∣∣Gy
n,l) ; Γ̄x

n(Il)
]

≤ C3P(Γ̄x
n(Il), N

y
n,l = ml)

∑

ml
l
∼nl

P(Γ̃y
n(Jl,ml)

∣∣Ny
n,l = ml)

≤ C3P(Γ̄x
n(Il))

∑

ml
l
∼nl

P(Γ̃y
n(Jl,ml)

∣∣Ny
n,l = ml).

Using (6.23), for some universal constant C5 < ∞,
∑

ml
l
∼nl

P(Γ̃y
n(Jl,ml)

∣∣Ny
n,l = ml) ≤ C5 Qn (l!)3a+δ3,l . (7.4)

Noting that Γ̃x
n(Ml−3) ∈ Gx

n,l, (7.1) then shows that

P
(
Γ̄x

n(Il)
)

(7.5)

≤
∑

ml
l
∼Nl

E

[
P(Γ̃x

n(Jl,ml), Nx
n,l = ml

∣∣Gx
n,l) ; Γ̃x

n(Ml−3)
]

≤ C6P

(
Γ̃x

n(Ml−3), N
x
n,l = ml

) ∑

ml
l
∼Nl

P(Γ̃x
n(Jl,ml)

∣∣Nx
n,l = ml)

≤ C6P

(
Γ̃x

n(Ml−3)
) ∑

ml
l
∼Nl

P(Γ̃x
n(Jl,ml)

∣∣Nx
n,l = ml).

Using (6.30) and (7.4) we get that, for some δ4,l → 0

P
(
Γ̄x

n(Il)
)
≤ C7l

15 (l!)δ4,l Qn. (7.6)

Putting (7.3), (7.4) and (7.6) together and adjusting C and δ′l−1 proves (5.12) for l(x, y) = l− 1.
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8 Approximate decoupling

The goal of this section is to prove the Decoupling Lemma, Lemma 7.1. Since what happens
‘deep inside’ D(y, r′n,l), e.g., Γy

n,l, depends on what happens outside D(y, r′n,l), i.e., on Gy
n,l, only

through the initial and end points of the excursions from D(x, r′n,l) to D(x, rn,l−1)
c, we begin by

studying the dependence on these initial and end points.

Consider a random path beginning at z ∈ ∂D(0, rn,l)n4 . We will show that for l large, a certain
σ-algebra of excursions of the path from D(0, r′n,l+1) to D(0, rn,l)

c prior to TD(0,rn,l−1)c , is almost
independent of the choice of initial point z ∈ ∂D(0, rn,l)n4 and final point w ∈ ∂D(0, rn,l−1)n4 .
Let τ0 = 0 and for i = 0, 1, . . . define

τ2i+1 = inf{k ≥ τ2i : Xk ∈ D(0, r′n,l+1) ∪ D(0, rn,l−1)
c}

τ2i+2 = inf{k ≥ τ2i+1 : Xk ∈ D(0, rn,l)
c} .

Abbreviating τ̄ = TD(0,rn,l−1)c note that τ̄ = τ2I+1 for some (unique) non-negative integer I.
As usual, Fj will denote the σ−algebra generated by {Xl, l = 0, 1, . . . , j}, and for any stopping
time τ , Fτ will denote the collection of events A such that A ∩ {τ = j} ∈ Fj for all j.

Let Hn,l denote the σ-algebra generated by the excursions of the path from D(0, r′n,l+1) to

D(0, rn,l)
c, prior to TD(0,rn,l−1)c . Then Hn,l is the σ-algebra generated by the excursions {v(j), j =

1, . . . , I}, where v(j) = {Xk : τ2j−1 ≤ k ≤ τ2j} is the j-th excursion from D(0, r′n,l+1) to
D(0, rn,l)

c.

Lemma 8.1. Uniformly in l, n, z, z′ ∈ ∂D(0, rn,l)n4 , w ∈ ∂D(0, rn,l−1)n4 , and Bn ∈ Hn,l,

P
z(Bn ∩ Ωl−1,l,l+1

0,n,l,1

∣∣XTD(0,rn,l−1)c
= w) (8.1)

= (1 + O(n−3))Pz(Bn ∩ Ωl−1,l,l+1
0,n,l,1 ),

and
P

z(Bn ∩ Ωl−1,l,l+1
0,n,l,1 ) = (1 + O(n−3))Pz′(Bn ∩ Ωl−1,l,l+1

0,n,l,1 ) . (8.2)

Proof of Lemma 8.1: Fixing z ∈ ∂D(0, rn,l)n4 it suffices to consider Bn ∈ Hn,l for which
P

z(Bn) > 0. Fix such a set Bn and a point w ∈ ∂D(0, rn,l−1)n4 . Using the notation introduced
right before the statement of our Lemma, for any i ≥ 1, we can write

{Bn ∩ Ωl−1,l,l+1
0,n,l,1 , I = i}

= {Bn,i ∩ Ai, τ2i < τ̄} ∩ ({I = 0 ,Xτ̄ ∈ ∂D(0, rn,l−1)n4} ◦ θτ2i)

for some Bn,i ∈ Fτ2i , where

Ai =
{
Xτ2j−1 ∈ ∂D(0, rn,l+1)n4 ,Xτ2j ∈ ∂D(0, rn,l)n4 , ∀ j ≤ i

}
∈ Fτ2i

so by the strong Markov property at τ2i,

E
z[Xτ̄ = w;Bn ∩ Ωl−1,l,l+1

0,n,l−1,1, I = i]

= E
z
[
E

Xτ2i (Xτ̄ = w, I = 0);Bn,i ∩ Ai, τ2i < τ̄
]

,
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and

P
z
(
Bn ∩ Ωl−1,l,l+1

0,n,l,1 , I = i
)

= E
z
[
E

Xτ2i (I = 0 ,Xτ̄ ∈ ∂D(0, rn,l−1)n4);Bn,i ∩ Ai, τ2i < τ̄
]

.

Consequently, for all i ≥ 1,

E
z[Xτ̄ = w;Bn ∩ Ωl−1,l,l+1

0,n,l,1 , I = i] (8.3)

≥ P
z
(
Bn ∩ Ωl−1,l,l+1

0,l,1 , I = i
)

× inf
x∈∂D(0,rn,l)n4

E
x (Xτ̄ = w; I = 0)

Ex (I = 0 ,Xτ̄ ∈ ∂D(0, rn,l−1)n4)
.

Necessarily P
z(Bn|I = 0) ∈ {0, 1} and is independent of z for any Bn ∈ Hn,l, implying that (8.3)

applies for i = 0 as well. By (3.2), (3.1), (2.20) and (2.49) there exists c < ∞ such that for any
z, x ∈ ∂D(0, rn,l)n4 and w ∈ ∂D(0, rn,l−1)n4 ,

E
x (Xτ̄ = w; I = 0)

Ex (I = 0 ,Xτ̄ ∈ ∂D(0, rn,l−1)n4)
≥ (1 − cn−3)HD(0,rn,l−1)c(z,w) .

Hence, summing (8.3) over I = 0, 1, . . ., we get that

E
z
[
Xτ̄ = w,Bn ∩ Ωl−1,l,l+1

0,n,l,1

]
(8.4)

≥ (1 − cn−3)Pz(Bn ∩ Ωl,l+1
0,n,l,1)HD(0,rn,l−1)c(z,w) .

A similar argument shows that

E
z
[
Xτ̄ = w,Bn ∩ Ωl−1,l,l+1

0,n,l,1

]
(8.5)

≤ (1 + cn−3)Pz
(
Bn ∩ Ωl−1,l,l+1

0,n,l,1

)
HD(0,rn,l−1)c(z,w) ,

and we thus obtain (8.1).

By the strong Markov property at τ1, for any z ∈ ∂D(0, rn,l)n4 ,

P
z(Bn ∩ Ωl,l+1

0,n,l,1) = P
z(Bn ∩ Ωl−1,l,l+1

0,l,1 , I = 0)

+
∑

x∈∂D(0,rn,l+1)n4

HD(0,r′l+1)∪D(0,rn,l−1)c(z, x)Px
(
Bn ∩ Ωl−1,l,l+1

0,n,l,1

)

The term involving {Bn ∩ Ωl−1,l,l+1
0,n,l,1 , I = 0} is dealt with by (2.21) and (8.2) follows by (3.32).

Building upon Lemma 8.1 we quantify the independence between the σ-algebra Gx
l of excursions

from D(x, rn,l−1)
c to D(x, r′n,l) and the σ-algebra Hx

n,l(m) of excursions from D(x, r′n,l+1) to

D(x, rn,l)
c during the first m excursions from D(x, r′n,l) to D(x, rn,l−1)

c. To this end, fix x ∈ Z
2,

let τ0 = 0 and for i = 1, 2, . . . define

τi = inf{k ≥ τ i−1 : Xk ∈ D(x, r′n,l)} ,

τ i = inf{k ≥ τi : Xk ∈ D(x, rn,l−1)
c}.
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Then Gx
l is the σ-algebra generated by the excursions {e(j), j = 1, . . .}, where e(j) = {Xk :

τ j−1 ≤ k ≤ τj} is the j-th excursion from D(x, rl−1)
c to D(x, r′n,l) (so for j = 1 we do begin at

t = 0).

We denote by Hx
n,l(m) the σ-algebra generated by all excursions from D(x, r′n,l+1) to D(x, rn,l)

c

from time τ1 until time τm. In more detail, for each j = 1, 2, . . . ,m let ζj,0 = τj and for i = 1, . . .
define

ζj,i = inf{k ≥ ζj,i−1 : Xk ∈ D(x, r′n,l+1)} ,

ζj,i = inf{k ≥ ζj,i : Xk ∈ D(x, rn,l)
c} .

Let vj,i = {Xk : ζj,i ≤ k ≤ ζj,i} and Zj = sup{i ≥ 0 : ζj,i < τ j}. Then, Hx
n,l(m) is the σ-algebra

generated by the intersection of the σ-algebras Hx
n,l,j = σ(vj,i, i = 1, . . . , Zj) of the excursions

between times τj and τ j, for j = 1, . . . ,m.

Lemma 8.2. There exists C < ∞ such that uniformly over all m ≤ (n log n)2, l, x ∈ Z
2 and

y0, y1 ∈ Z
2 \ D(y, r′n,l), and H ∈ Hx

n,l(m),

(1 − Cmn−3)Py1(H ∩ Ωl−1,l,l+1
x,n,l,m ) ≤ P

y0(H ∩ Ωl−1,l,l+1
x,n,l,m | Gx

l ) (8.6)

≤ (1 + Cmn−3)Py1(H ∩ Ωl−1,l,l+1
x,n,l,m ) .

Proof of Lemma 8.2: Applying the Monotone Class Theorem to the algebra of their finite
disjoint unions, it suffices to prove (8.6) for the generators of the σ-algebra Hx

n,l(m) of the form
H = H1∩H2∩· · ·∩Hm, with Hj ∈ Hx

n,l,j for j = 1, . . . ,m. Conditioned upon Gx
l the events Hj are

independent. Further, each Hj then has the conditional law of an event Bj in the σ-algebra Hn,l

of Lemma 8.1, for some random zj = Xτj −x ∈ ∂D(0, rn,l)n4 and wj = Xτ j −x ∈ ∂D(0, rn,l−1)n4 ,
both measurable on Gx

l . By our conditions, the uniform estimates (8.1) and (8.2) yield that for
any fixed z′ ∈ ∂D(0, rn,l)n4 ,

P
y0(H ∩ Ωl−1,l,l+1

x,n,l,m | Gx
l ) (8.7)

= P
y0(∩m

j=1(Hj ∩ Ωl−1,l,l+1
x,n,l,1 ) | Gx

l )

=

m∏

j=1

P
zj(Bj ∩ Ωl−1,l,l+1

x,n,l,1 |XTD(0,rl)
c = wj)

=
m∏

j=1

(1 + O(n−3))Pzj (Bj ∩ Ωl−1,l,l+1
0,n,l,1 )

= (1 + O(n−3))m
m∏

j=1

P
z′(Bj ∩ Ωl−1,l,l+1

0,n,l,1 ) .

Since m ≤ (n log n)2 and the right-hand side of (8.7) neither depends on y0 ∈ Z
2 nor on the

extra information in Gx
l , we get (8.6).
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Corollary 8.3. Let Γy
n,l = {Ny

n,i = mi; i = l + 1, . . . , n} ∩ Ωl−1,··· ,n
y,n,l,ml

. Then, uniformly over all

n ≥ l, ml
l∼ Nl, {mi : i = l, l + 2, . . . , n}, y ∈ Un and x0, x1 ∈ Z

2 \ D(y, r′n,l),

P
x0(Γy

n,l , Ny
n,l = ml | Gy

l ) (8.8)

= (1 + O(n−1 log n))Px1(Γy
n,l |N

y
n,l = ml)1{Ny

n,l=ml}

Proof of Corollary 8.3: For j = 1, 2, . . . and i = l + 1, . . . , n, let Zj
i denote the number of

excursions from D(y, rn,i−1)
c to D(y, r′n,i) by the random walk during the time interval [τj, τ j].

Clearly, the event

H = {
ml∑

j=1

Zj
i = mi : i = l + 1, . . . , n} ∩ Ωl+1,...,n

y,n,l+1,ml+1

belongs to the σ-algebra Hy
n,l(ml) of Lemma 8.2. It is easy to verify that starting at any

x0 /∈ D(y, r′n,l), when the event {Ny
n,l = ml} ∈ Gy

l occurs, it implies that Ny
n,i =

∑ml
j=1 Zj

i for
i = l + 1, . . . , n. Thus,

P
x0(Γy

n,l |G
y
l )1{Ny

n,l=ml} = P
x0(H ∩ Ωl−1,l,l+1

y,n,l,ml
|Gy

l )1{Ny
n,l=ml} . (8.9)

With ml/(n
2 log n) bounded above, by (8.6) we have, uniformly in y ∈ Z

2 and x0, x1 ∈ Z
2 \

D(y, r′n,l),

P
x0(H ∩ Ωl−1,l,l+1

y,n,l,ml
|Gy

l ) = (1 + O(n−1 log n))Px1(H ∩ Ωl−1,l,l+1
y,n,l,ml

) . (8.10)

Hence,

P
x0(Γy

n,l |G
y
l )1{Ny

n,l=ml} (8.11)

= (1 + O(n−1 log n))Px1(H ∩ Ωl−1,l,l+1
y,n,l,ml

)1{Ny
n,l=ml}

.

Setting x0 = x1 and taking expectations with respect to P
x0, one has

P
x1(Γy

n,l |N
y
n,l = ml) = (1 + O(n−1 log n))Px1(H ∩ Ωl−1,l,l+1

y,n,l,ml
). (8.12)

Hence,

P
x1(Γy

n,l |N
y
n,l = ml)1{Ny

n,l=ml} (8.13)

= (1 + O(n−1 log n))Px1(H ∩ Ωl−1,l,l+1
y,n,l,ml

)1{Ny
n,l=ml}

= (1 + O(n−1 log n))Px0(Γy
n,l |G

y
n,l)1{Ny

n,l=ml}

where we used (8.11) for the last equality. Using that {Ny
n,l = ml} ∈ Gy

n,l , this is (8.8).
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9 Appendix

Let q0(x) = 1{0}(x) and for n ≥ 1 let

qn(x) =
1

2πn
e−|x|2/2n.

Proposition 9.1. Suppose Xn is a strongly aperiodic symmetric random walk in Z
2 with the

covariance matrix of X1 equal to the identity and with 3 + 2β moments. Then there exists c1

such that
sup
x∈Z2

|pn(x) − qn(x)| ≤ cn− 3
2
−β, n ≥ 1.

Proof. Let φ be the characteristic function for X1. Since X1 is symmetric, the third moments

are zero, that is, if X1 = (X
(1)
1 ,X

(2)
1 ), i1, i2 ≥ 0, i1 + i2 = 3, then E[(X

(1)
1 )i1(X

(2)
1 )i2 ] = 0. So by

a Taylor expansion,

φ(α/
√

n) = 1 − |α|2
n

+ E1(α, n),

where
|E1(α, n)| ≤ c2(|α|/

√
n)3+2β ,

provided α ∈ [−π, π]2. Similarly

e−|α|2/n = 1 − |α|2
n

+ E2(α, n),

where the error term E2(α, n) has the same bound. We now follow Proposition 3.1 of (2), using
the above estimate for Ei(α, n), i = 1, 2, in place of the one in that paper.

Proposition 9.2. Let Xn be as above and

a(x) =
∞∑

n=0

[pn(0) − pn(x)].

Then for x 6= 0, a(x) ≥ 0, and

a(x) =
2

π
log |x| + k + o(1/|x|), (9.1)

where k is a constant depending on p1 but not x.

Proof. By (13), p. 76,

pn(x) = c

∫

C
e−ix·uϕ(u)n du,

where ϕ is the characteristic function of X1 and C is the cube of side length 2π centered at the
origin. Then

a(x) =

∫

C

1 − e−iu·x

1 − ϕ(u)
du. (9.2)
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Since X1 is symmetric, ϕ is real. Since a(x) is real, we take the real parts of both sides of (9.2)
to obtain

a(x) =

∫

C

1 − cos(u · x)

1 − ϕ(u)
du ≥ 0.

To prove (9.1) we write

a(x) =
∑

n

[pn(0) − qn(0)] +
∑

n

[qn(0) − qn(x)] (9.3)

+
∑

n

[qn(x) − pn(x)]

= I1 + I2 + I3.

Since n− 3
2
−β is summable, I1 is a constant not depending on x. I2 has the form given in the right

hand side of (9.1); see the proof of Theorem 1.6.2 in (8). So it remains to show I3 = o(1/|x|).
We write

I3 =
∑

n≤N

pn(x) +
∑

n≤N

qn(x) +
∑

n>N

[pn(x) − qn(x)] (9.4)

:= I4 + I5 + I6,

where we choose N to be the largest integer less than |x|2/ log2 |x|.
Note

|I4| ≤ P(max
n≤N

|Xn| ≥ |x|).

We estimate this using truncation and Bernstein’s inequality. Let ξi = Xi − Xi−1, define ξ′i =
ξi1

(|ξi|≤N
1
2−

β
4 )

, and X ′
n =

∑
i≤n ξ′i. We have

P(Xn 6= X ′
n for some n ≤ N) ≤ P(ξn 6= ξ′n for some n ≤ N)

≤ N max
n≤N

P(ξn 6= ξ′n)

≤ Nc1N
( 1
2
−β

4
)(3+2β) ≤ c1N

− 1
2
−β

8 .

With our choice of N we see that

P(Xn 6= X ′
n for some n ≤ N) = o(1/|x|). (9.5)

By Bernstein’s inequality ((3))

P(max
n≤N

|X ′
n| ≥ |x|) ≤ 2 exp

(
− |x|2

2c2N + 2
3 |x|N

1
2
−β

4

)
(9.6)

≤ 2e−c3 log2 |x| = o(1/|x|).

Combining (9.5) and (9.6) yields the required bound on |I4|.
We can show I5 = o(1/|x|) by straightforward estimates. Finally, by Proposition 9.1,

|I6| ≤
∑

n>N

c4n
− 3

2
−β = O(N− 1

2
−β) = o(1/|x|).

43



Summing the estimates for I4, I5, and I6 shows I3 = o(1/|x|) and completes the proof.

The following result holds for all mean zero finite variance random walks in any dimension d.
To keep the notation uniform we use D(0, n) to denote the ball (if d ≥ 3) or disc (if d = 2) of
radius n centered at the origin. When d = 1 we let D(0, n) = (−n, n).

Lemma 9.3. For some c < ∞

E
x(TD(0,n)c) ≤ cn2, x ∈ D(0, n), n ≥ 1. (9.7)

Proof. Let T = min{j : |Xj − X0| > 2n}. By the invariance principle

P
x(T > c1n

2) = P
x( sup

j≤c1n2

|Xj − X0| ≤ 2n) (9.8)

= P
0( sup

j≤c1n2

|Xj − X0| ≤ 2n)

≤ ρ < 1

for all x if we take c1 = 1 and n is large enough. Taking c1 larger if necessary, we get the
inequality for all n. Then letting θj be the usual shift operators and using the strong Markov
property

P
x(T > c1(k + 1)n2) ≤ P

x(T ◦ θc1kn2 > c1n
2, T > c1kn2) (9.9)

= E
x
[
P

Xc1kn2 (T > c1n
2);T > c1kn2

]

≤ ρP
x(T > c1kn2).

Using induction
P

x(T > c1kn2) ≤ ρk, (9.10)

and our result follows easily.

Equation (6) of (9) does the simple random walk case of the following.

Lemma 9.4. We have

lim
n→∞

log TD(0,n)c

log n
= 2, P

0-a.s.

Proof of Lemma 9.4: Let ε > 0. By Chebyshev and Lemma 9.3,

P
0(TD(0,n)c > n2+ε) ≤

E
0TD(0,n)c

n2+ε
≤ cn−ε.

So by Borel-Cantelli there exists M0(ω) such that if m ≥ M0, then TD(0,2m)c ≤ (2m)2+ε. If
m ≥ M0 and 2m ≤ n ≤ 2m+1, then

TD(0,n)c ≤ TD(0,2m+1)c ≤ (2m+1)2+ε ≤ 22+εn2+ε,

which, since ε is arbitrary, proves the upper bound.
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By Kolmogorov’s inequality applied to each component of the random walk,

P
0(TD(0,n)c < n2−ε) = P

0( sup
k≤n2−ε

|Xk| > n) ≤ c
E

0|Xn2−ε |2
n2

≤ cn−ε.

So by Borel-Cantelli there exists M1(ω) such that if m ≥ M1, then TD(0,2m)c ≥ (2m)2−ε. If
m ≥ M1 and 2m ≤ n ≤ 2m+1, then

TD(0,n)c ≥ TD(0,2m)c ≥ (2m)2−ε ≥ 2ε−2n2−ε,

which proves the lower bound.
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the Erdős-Taylor conjecture on random walk, Acta Math. 186 (2001), 239–270. MR1846031

[5] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, Cover time for Brownian motion and random
walks in two dimensions, Ann. Math. 160 (2004), 433–467. MR2123929

[6] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, Late points for random walks in two dimen-
sions, Ann. Probab. 34 (2006) 219–263. MR2206347

[7] J.-P. Kahane, Some random series of functions: Second Edition, Cambridge University Press,
(1985). MR0833073

[8] G. Lawler, Intersections of random walks. Birkhäuser, Boston (1991). MR1117680
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