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We study large deviations for the renormalized self-intersection local
time of d-dimensional stable processes of indgx (24/3,d]. We find a
difference between the upper and lower tail. In addition, we find that the
behavior of the lower tail depends critically on whetlgex d or  =d.

1. Introduction. Let X, be a nondegeneratedimensional stable process of

index 8. We assume thaX, is symmetric, that isX; 4 —X,, but we do not assume
it is spherically symmetric. Thus,

(1.1) E(e" Xy =7V,

where ¥ (1) > 0 is continuous, positively homogeneous of degfeethat is,
v (ra) =rfy (1) for eachr > 0, ¥ (—1) = ¥ (1) and for some & ¢ < C < oo,

(1.2) cAf <y ) <CIrP.

In studying the self intersections ¢X;; ¢+ > 0}, one is naturally led to try to give
meaning to the formal expression

(1.3) /(: /0 So(Xs — X,)dr ds,

wheredp(x) is the Dirac delta “function.” Le{ f:(x); ¢ > 0} be an approximate
identity and set

(1.4) /(;t /: fe(Xy — X,)drds.

Wheng > d, so that necessarity= 1 and{X,; ¢t > 0} has local time$L;; (x,t) €
R x R}, (1.4) converges as — 0 to 3 [(LY)?dx. Large deviations for this
object have been studied in [7].

Received October 2003; revised May 2004.

1Supported in part by NSF Grant DMS-02-44737.

2Supported in part by NSF Grant DMS-01-02238.

3Supported in part by grants from the NSF and from PSC-CUNY.

AMS 2000 subject classifications. Primary 60J55; secondary 60G52.

Key words and phrases. Large deviations, stable processes, intersection local time, law of the
iterated logarithm, self-intersections.

984



INTERSECTION LOCAL TIMES 985

In this paper we assume that< d. In this case (1.4) blows up as— 0. We
consider instead

t s t s
(1.5) y,,ng/fg<xs—xr)drds—E{/ffg(xs—xr)drds}
0 JO 0 JO
and let
(1.6) Ye=limy ¢
e—=0

whenever the limit exists. It is known that this happens if (and onh\8if) 24/3,
and theny, is continuous irr almost surely [22, 23, 26]. In this case we refepto
as the renormalized self-intersection local time for the proggs&Renormalized
self-intersection local time, originally studied by Varadhan [28] for its role in
guantum field theory, turns out to be the right tool for the solution of certain
“classical” problems such as the asymptotic expansion of the area of the Wiener
and stable sausages in the plane and fluctuations of the range of stable random
walks. See [14, 15, 18, 25]. In [27] we show thatcan be characterized as the
continuous process of zero quadratic variation in the decomposition of a natural
Dirichlet process. For further work on renormalized self-intersection local times,
see [3, 10, 16, 21, 26].

The goal of this paper is to study the large deviationg,ofgeneralizing the
recent work for planar Brownian motion of the first two authors [2].

THEOREM 1. Let X; be a symmetric stable process of order 2d/3 < B8 <d
in RY. Then, for some 0 < ay, < oo andany i > 0,

1
(1.7) tILngo 7 log P(y, > ht?) = —h#ay.

The constant:y, is described in Section 4 and is related to the best possible
constant in a Gagliardo—Nirenberg type inequality.
y, is not symmetric. In fact, the lower tail has very different behavior.

THEOREM2. Let X; bea symmetric stable process of order g > 24/3in R?.
Then we can find some 0 < by, < oo such that if g < d,

1
(1.8) t|l>moo A log P(—y; > t) = —by,
whileif 8 =d,

1
(1.9) [lim_~log P(=y1 = p1(0)l0gr) = —by,

where p; (x) isthe continuous density function for X,.
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We are unable to identify the constank®,, < oo.

Using the scaling propertyX (rs): s > 0} < tY8{X (s);s > 0} of the stable
process, it is easy to check that

(1.10) yi L1271y,
Thus, (1.7)—(1.9) are equivalent to

1
(2.11) I \ L log P(y1 > h) = —ay,

1
(1.12) I|m hﬂ/(d ) |OgP(—]/12h)=—b1/,, Be(2d/3,d),

, 1
(1.13) hllm PO log P(—y1 > h) = —by, B=d.

Equations (1.11) and (1.12) show that

.1
(19 Jim =109 P(1ylP = by = —ay,
which implies that
i -1
(1.15) E(e)»lyllﬂ/d) < 00, ifA<ay”,
=00, if A> alzl.

Our large deviation results lead to the following law of the iterated logarithm
(LIL) type results.

THEOREM 3. Let X, be a symmetric stable process of order 2d/3 < 8 <d
in RY. Then

- Ve _ —d/B
(1.16) “migpt(z—d/ﬁ)(logIogt)d/ﬂ =ay, a.s.

THEOREM4. Let X; be a symmetric stable process of order 8 > 24/3in R¢.
If 8 <d,then

Ve _p—(d/B=1)
(2.17) I|n_1>|or<1>f (=47 (log logr)4/7~ 1=-by a.s.,
whileif 8 =d, then
1
(2.18) liminf ——— y, = —p1(0) as.

i>oo 7logloglogr !

The methods needed for this paper are very different from those used in [2] for
planar Brownian motion. In that case, and more generally whend, the upper
bound for large deviations for, comes from a soft argument involving scaling.
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This argument breaks down whén< d. Instead, we obtain the upper bound using
careful moment arguments developed in Sections 2 and 3.

Another major difference between this paper and [2] is in the proof of the
lower bound for large deviations fory, when 8 < d. Suppose we divide the
time interval[0, n] into subintervalsly = [k, k + 1], k=0, ...,n — 1, letI"'(I})
denote renormalized self-intersection local time for the piece of the path generated
by times in/;, and letA(/;; Iy) denote the intersection local time for the two
pieces generated by times in and I, when j # k. Then the major contribution
to the renormalized self-intersection local time for planar Brownian motion on the
interval [0, n] comes from2j<k[A(Ij; Iy) — EA(I}; I)]; the contribution from
>« T'(Ix) is smaller. In contrast, whef < d, both contributions are of the same
order of magnitude. As a result, the lower bound for; when g < d requires a
much more delicate argument.

Our paper is organized as follows. In Section 2 we obtain bounds on exponential
moments of the intersection local time for two independent processes, which is
then used in Section 3, following an approach due to Le Gall, to obtain bounds on
exponential moments of the renormalized self-intersection local fimend, in
particular, to obtain an exponential approximatiornypby its regularizatiory; ..
Together with some results from [8], this allows us to prove Theorem 1
in Section 4. In Sections 5 and 6 we prove Theorem 2 on the lower tai.of
Finally, these results are used in Sections 7 and 8 to prove the LILs of Theorems 3
and 4, respectively.

2. Intersection local times. Let X,, X; be two independent copies of the
symmetric stable process of ordgrin R? with characteristic exponent and
set

t t
(2.1) ae @[ [ fxo=Xparas,
0 Jo JRd

where f, is an approximaté—function at zero, that isf, (x) = f(x/¢)/e¢ with
f € 8(R?) a positive, symmetric function withi f dx = 1. If f(p) denotes the
Fourier transform off, then f(ep) is the Fourier transform of, and we have,
from (2.1),

t t X NN
(2.2) e = (2m)7¢ /O /O /R de”"“&’*xr)f(sp)dpdrds.

THEOREMS. Let X;, X; beindependent copies of a symmetric stable process
of order d/2 < B <d in R¢. Thenfor all p > 0 sufficiently small, we can find some
6 > 0 such that

O e — Oy ¢/

B/d+p)
(23) sup E(eXp{9’ e — 8/|pt27(d+p)//3 ’ }) =

g,&,t>0
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Furthermore,

al,&‘ — at,{;‘, 'ﬂ/(d+p)})

(2.4) Jim sup E (exp{9 e — &/ |Pr2—(d+p)/P

—0; ¢ 150

PROOE From (2.2), we have that

t t . ! o~ o~
(25) are—op = (21)¢ / / / de”"(Xs*Xr)(f(sp)— f(&' p))dpdrds.
0 JO JR
Hence,
E({at,s - at,e’}n)

— (2m) " / / E (e T e X=X,
(2.6) [0,¢1" J[0,¢] J Rdn
n -~ o~
x [[(Ftepj) — F(¢'pp))dp;dr;ds;.
j=1

We then use the decomposition
[0,7]" x [0,¢]" = U Dy (m, 7"),
7’

where the union runs over all pairs of permutationst’ of {1,...,n} and
D,(r, 7)) = {1, osrny St Sy < oo < Fp, <08, Spi < -0 < Sx < t}.
Using this, we then obtain

E({are —are}")
—27)" ndZ/ E (¢ Dz e Xa =Xy

wrx’) JRO

2.7)
X H{f(Epj) — f(e’pj)}dpj drjds;.
j=1
On D, (m, '), we can write

n
Z Pr(Xs,

g !

”k—l

n
= Zun,k(xrﬂk - rﬂk 1 Z”n’ k(X X/ )7
k=1
where, for any permutatiom, we setu, ; = Zj:k Pxj- Hence, oD, (7, '),
E( of Thm1 Pk (X —X,ik))

(2.9) .
— o Tk V) —rmy_p) = k=t VU D6 =y )
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We will use the bounq:lf(spj) - f(s/pj)l <Cle—¢'|’|p;j|° foranyp < 1. Using
the Cauchy—Schwarz inequality, we have

n
i YR X, — X,
/;edn E(esz,lpk( k k)) 1_[ |Pj|'0dpj
j=1

n 1/2
(210) < (Ldn e—ZZk:1ilf(un.k)(rnk—rnk_l) l_[ |pJ|,O dp/>
j=1

2501 W g ) ) 12
— k=1 uﬂ/,k Sn/ —Sﬂ/
x(/Rdne ko Tk-1 H|Pj|pdpj) ]

j=1

Now H?:l |Pj| = H?:l |P7rj| = H?:l |u7r,j - uﬂ,j+1| =< H?:l |u7r,j| + |u71,j+1|
so that, using (1.2) for the second inequality,

n
=23} k)l =
/Rzn ¢ 2Xi1 VW)=t 2) T | p; 19 dp;
j=1

n
2 : =237 Y T, —T l—[ hi
< /n e Zk_lw( 7.k )( Tk ”k—l) |M7T,j| jp duﬂ’j
h

(2.11) j=1

n
5 B

< = k=1 Ukl (rnk_rnk_l) hjp .
W [T i1 i

h j=1

- —(d+h;0)/B
+hjp

=C" Z H Fap = 1) R

where the sum runs over dll= (1, ..., h,) such that eacth; = 0,1 or 2 and
Hence, taking > 0 sufficiently small thatd + 2p)/28 < 1, we have

(=)

2
<C"(n) (Z/ ]_[(rj —rj-1)" (d+h;p)/2B gy )

<
1<-<Ip=< lj 1

Ot e — O ¢

le —¢'lP

(2.12)

<C" (tn(1—<d+p>/25> n! )2
) Cn(l—(d +0)/28))

< Cnt2n(1*(d+ﬂ)/2/3)(n!)(d+p)/ﬂ_
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Hence, by Hoélder’s inequality,

. e —ape [N Gro—are  [N\P/@P
(2.13) le — ¢&’|Pt2—(d+p)/B - le — &/|P 12— (d+p)/B
<C"n!.

Theorem 5 follows easily from this.[d

If we set

def § ! /
(2.14) Osre = /o fo fe(Xs —X,)drds,
then by the same method we can show that
(2.15) osr = liM ag ;¢
e—0

exists a.s. and in allL.? spaces and for songe> 0,
2.16 £ (explo] |

. su expyd|————= .
(2:40) im0 ( p{ (s1)1- 4728 ‘ D =

Let p;(x) denote the density function fd¢, started at the origin.

THEOREMG6. Let X,, X; beindependent copies of a symmetric stable process
of order d/2 < B <d in RY. Let P00 bethe joint law of (X,, X}) when X, is
started at xo and X is started at yo. Then

(2.17) EG030 (1) < ¢y [s2 P 4 27UP (5 4 2P,
where
(2.18) p1(0)

Cy = .
VT d/B-1D@—d/B)
If xo = yo, then we have equality in (2.17).
If 8 =d, then we obtain

(219)  E)(ay ;) < pa(0)[(s + 1) log(s +1) — tlogs — slogs]
with equality if xo = yo.

PRoOF We have

K t
E<x0’y0>< / / fg(Xr—X;)drdu>
0 JO

N t
:/0 /o /fe(x_y)pr(x—XO)pu(y—yo)dxdydrdu
(2.20)

st
:/0/o/fs(x)pr(x+y—(xO—yo))pu(y)dxdydrdu

=/0S /Ot‘/fg(x)pﬂru(x — (x0 — y0))dx drdu,
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where the last line follows from the semigroup property. Letting 0 and using
the fact that (2.15) converges Irt,

s t
00 ) = [ [ pruxo = oy drdu.
0 Jo
Using symmetry, the right-hand side is less than or equal to
/ / p1(0) drd
u
o (r+u)d/f
with equality whenxg = yg. Some routine calculus completes the prodfl
3. Renormalized self-intersection local times. Let X, be a symmetric stable

process of ordep in R?. For any random variabl&, we set{Y}o =Y — E(Y).
For each bounded Borel sBtC Ri, let

(3.2) ye(B) = {/B f fe(Xs — Xr)drds}o.

We sety, . = y:(B;), whereB, = {(r,s) € R2|0<r <s <t}.
Using the scaling(ss < Y8 X, and fi. (x) = Aidfg (x/1), we have
(3.2) Ve(B) £0=@=/B)y, 10 (1B).

THEOREM7. Let X; be a symmetric stable process of order 8 > 2d4/3in R,
Then for all p > 0 sufficiently small, we can find some 6 > 0 such that

— B/(d+p)
Vie Ve
(3.3) sup E<eXp{6‘|£—8’|pt2_(d+p)/ﬂ‘ }) < 00.

g,e,t>0

PROOF Taking A = 1/r and B = B; in (3.2), we see that it suffices to
prove (3.3) when = 1. We adapt a technique pioneered by Le Gall [17].
Let

(3.4) Z =[2k —-2)27", 2k — 127" x [(2k — D)27", (2k)27"].
Note thatB; = (%, 2", A" so that, for any > 0,

oo 201
(3.5) Yie= D > ve(AD).

n=1k=1

We will use the following lemma whose proof is given at the end of this section.
LEMMA 1. Let 0< p <1 and let {Yx(¢)}k>1 be afamily (indexed by ¢) of

sequences of i.i.d. real valued random functions such that E (Y (¢)) = 0 and

(3.6) lim supEe/M©O =1,

6—0 C
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Then for some A > 0,

p
(3.7) SUPE exp{/\ } < 0.
n.g

Y Yi(@)//n
k=1

By (2.4), for somep > 0,

ye(A]) — yer (A7) [P/ D 4
e —&'|° '

(3.8) lim sup E(exp{@

0—)05’8/>0

Hence, by Lemma 1, for sonie> 0,

e?:= sup (E(exp{x
N,e,e'>0
3.9

2N71

> Are@VTVAY) — e @V TPAY))
k=1

X (Z(N_l)/zls — 8/|")_1

D)

is finite.
Sincep > Zd, for p > 0 sufficiently small,

(3.10) a:=3B/d+p)—1>0.
Write
N .
(311) b1=22"" and by=r2"JJA-2%), N=23,....
j=2

Then for any integeN > 1, by Holder’s inequality,

N on—1 . vy 1B(ddp)
YN 32y (AT — y(A
W,y 3=E<eXp{bN‘ "o Yiiy (Ve(AD) — ye( k)}‘ })

e &'
by
= (E (exp{ (1= 2-aN)

g ‘ YN IS 2 (AT =y (AD)) ‘ﬂ/(der) }>>12—a1v

le —e&’|P
X (E(exp{bNZ"N

(3.12)

2—aN

Y2 e (AY) — v (AM)) ‘ﬂ/(dﬂ))}))
le —&’|P
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Takingx = 2¥-1in (3.2), we see that

2Nfl

> e (AY) = yer (A}

k=1
(3.13) d 5—(2-d/B)(N-1)

2N71

< Y Aveow-1s QNP AY) — yow-18,, 2NV AN}
k=1

Using (3.10), we note that

d p d+p 1

Hence,

2aN

N—-1
Y2 ye(AY) — v (AN)) ‘ﬂ/(d-i-p)
le —&'|P

(3.15) -
Y2 Veov-18 QN D ANY — y ov1y8 QN =D AN Y} B/ +0)

< 24
- 2WN=1)/2|c2(N=D)/p _ g/2(N=D)/B|p

in law. Using this, the finiteness of (3.9) and the fact #ha2* < A for the last line
of (3.12), and (3.11) and the fact that-12-¢VN < 1 for the second line of (3.12),
we have that

(316) \Ijs,s/,N < \I"s,e/,N—l eXp{¢2_aN}-
Inductively,
W, oy <expig2¢(1—274) 71,

Letting N — oo, Theorem 7 follows by (3.5) and Fatou’s lemmé.]

It follows from Theorem 7 and Kolmogorov's continuity theorem that
(3.17) vei=1lim ye
e—0

exists a.s. and in all.” spaces.
Furthermore, it follows from Theorem 7 that for somgd > 0,

Vi— e |P1E@O .
e 12—(d+p)/B :

(3.18) sup E(exp{e

&,t>0
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Note that, since fop > 0 sufficiently smallg/(d + p) > 1/2, it follows that for
anyi,é > 0,

E@xpirly — vielY?))
<M+ E(exp(Aly: — yl‘,é‘|l/2}]l{‘y,7y,,£|2(5l)2})

_ B/(d+p)
18t _ N T Ve
sem+k (exp{k‘ (81)2—+0)/B ‘ D

Using (3.18), we conclude that, for aay- 0,

(3.19)

1
(3.20) lim suplimsup=log E (exp{A|y; — y:.¢|*?}) = 0.

e>0 t—oo [

For later reference we note that arguments similar to those used in proving
Theorem 7 show that, for sonde> 0,
2 A
12-d/P ‘

(In fact, by scaling, we only need this foe=1.)

(3.21) SUpPE (exp{e

t>0

PROOF OFLEMMA 1. Lety,(x) = ¢*” — 1 for largex and linear near the
origin so thatyr, (x) is convex. We usg - ||y, to denote the norm of the Orlicz
spaceLy,, with Young's functiony,,. Assumption (3.6) implies that, for some
M < oo,

(3.22) supl[Y1(O)ly, < M.
3

By Theorem 6.21 of [13], i, are i.i.d. copies of a mean zero random variable
&1 € Ly, then for some constaiif,, depending only o,
wp)'

do&| < Kp( Y &
k=1 ly, k=1

Using Proposition 4.3.1 of [11], for some constéht, depending only o,

=+ || max
H max &

Ly

max &

1<k<n

< Cp(logn)|i&1lly,-

vp
Since thes; are i.i.d. and mean zero,

Y& <D &
k=1 k=1

Ly

< Vnll&llL,.

Ly

Thus, we have

" logn
6 i D,,<||sl||L2 + Wnsluw,,)
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for some constanD,, depending only op. Lemma 1 follows immediately from
this. O

4. Largedeviationsfor renormalized self-intersection local times. Let

(4.1) &/ 0= [ W ITp)Pdp
and set
(4.2) Fy ={f € L2RD|Ifll2=1, & (f, f) < 00}

The following lemma is proven is Section 2 of [8].

LEMMA 2. If B> d/2,thenfor any A > 0O,

(4.3) My () := sup{rll flI5 — &y (f, f)} < oo
feFy

and

(4.4) My (0) =221 @B=D (1),

Furthermore,

45) kg =inf{CllI fllzp < CI I PLe,%(f. P12 < 00
and
_2B—d dics,\ 28/ 2p=d)

We write My, = My, (1) and let

d /28 —d\ 2B—d)/d
@.7) Ky = _< P ) .
B\2BMy
PROOF OFTHEOREM 1. We show that ifX; is a symmetric stable process of
orderg > 2d/3in R?, then

1
(4.8) Jlim - log P(y; > 1%) = —2P/4-1k,,.

[This definesay, of (1.7).]

Let 4 be a positive, symmetric function in the Schwarz clag®?) with
[hdx =1, and note thalf =& x h has the same properties afid= h. * h..
Using this, observe that

fotfos fe(Xs — Xy)drds
/J'/Otfg(Xs — X, )drds

/Rd</othe(xs —x)ds)zdx,

(4.9) =

NI

Il
NIl
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hence, by Theorem 5 of [8], for arly> 0,

t s 1/2
lim - IogE exp{k(/ / fe(Xs — X)) dr ds) }
>0t 0 Jo

w0 =i el ([ nx - ))

:g_?;s{\%@ed |(g2*h8)(x)|2dx)1/2 - 8¢(g,g)}.

For each fixed > 0,

E(/t/s Fo(X, —X,)drds)
_/R// (7%= XD)dr ds f(ep) dp
:/Rd/o ./0 e_(s_’)‘”(p)drdsf(sp)dp

1 . dp —
<cif g lferdp=0w

(4.11)

if B <d.[Whenpg = d, we can easily obtai® (:11?%) for anys > 0.] Using (3.20),

we conclude that for any > 0,
t ps 1/2
—f/fs(Xs—X,)drds }):O.
0 Jo

Hence, using (4.10) together with the argument used to take tke0 limit
in [8] and then recalling (4.4),

(4.12) limsuplimsup— IogE(ex

e—>0 t—00

1 1
= /2
Jim_ ~log E expizlyi[*?)

|' ) X X 1/2
:gino;lfwg{ﬁ(/;eng *he)(x)] dX> —&/f(g,g)}

2 ‘g 1/2
- ol (stoe) —eveo)

A\ 28/(28—d)
= (ﬁ) My-

(4.13)
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By the Gartner—Ellis theorem ([9], Theorem 2.3.6)

1 2
lim —log P(ly:| > 1)
t—>o0 t
A\ 28/(28—d)
4.14 = —SUD{/\ - <—> M }
( ) A>0 \/z v
- _zﬂ/d—li(%;d)(z’g o
B\28M,y
On the other hand, writingy; = y,© — ¥, and using the positivity of
B JS fe(Xs — X,)drds and (4.12), we have that for any

(4.15) lim sup} log E (exp(r]y,”|¥/2}) = 0.

t—oo [

Theorem 1 then follows. O
5. Thelower tail; 8 <d.

PROOF OFTHEOREM 2 WHEN 8 < d. For each bounded Borel satC Ri,
we sety(A) = lim._0y:(A), recall (3.1). This limit is known to exist. Let
L([s, D) :==y({(u,v)|ls <u <v =<1}) and with [0, s;5,7] = {(u,v)[0<u <5 <

v <t} note thaty ([0, s; s, 1]) 4 {as.1—s}o. Thus, for any positive andt,

(5.1) Yo+t =¥s £ Tls, s +21) + (0, s]; [s, s +¢])
>ys + T'([s,s +1]) — Ea([0, s]; [s, s +£]).
Note thaty, € F, = o (X,,0<r <s), ['([s,s 4+ t]) is independent off;, and
I'([s, s 4+ t]) has the same distribution gs Define
(5.2) Zy=cyt?> Py, Zyi=cyt>™ B T ([s,5 +1]).

By the above{Z; ;; r > 0} is independent ofZ,; u < s} and we havdZ; ;;t >
0} 4 {Z;;t > 0}. Using (5.1) and Theorem 6, we have that for any> 0,

(5.3) Zewi <Zs+Zg;.
Givena > 0, define
1, =inf{s; Z; > a}.
By continuity,Z;, =a ont, < oo. Let

(5.4) ¢(hy= sup |Z;, — Zy|.
|?§§Elh



998 R. BASS, X. CHEN AND J. ROSEN
Fixa,b,n>0and 0<§ <a, b,

P(supzt > a+b, ¢(1/n) < 5)

<1

n—2
=Y P(supZ, >a+b,¢p(1/n) <8, j/n<t,<(j+ 1)/")
j=0 t<1
n—2
(5.5) < P<SupZ(j+l)/n,t >b—06,j/n<t,<(j+ 1)/")
j=0 t<1
n—2
= Z P(sulpZ(jH)/m >b —5)P(j/n <t,<((+ 1)/n)
j=0 =
< P<supZ, > a)P(supZ; >b— 8).
<1 <1
Using the continuity ofZ; and first taking: — oo and therns — 0, we obtain
(5.6) P(supZ, >a+ b) < P(supZt > a)P(supZ, > b).
<1 <1 r<1
Hence, there is > 0 such that for somgg < oo,
(5.7) P(supZt > x) <e ™ Va> o,
<1l
so that
(5.8) E exp{cosupZ,} <0
<1

for somecg > 0. Then by the sub-additivity (5.3) and what we have just proven,
there isco > 0 such that

Eexp{cosupZ,} < (E exp{cosupZ,}) < 00

t<n t<1

for all n. Then by the scaling (1.10), we see that (5.8) holds forcglt 0.
Therefore, we have

(5.9) Eexp{csup{—yt}} < 00 Ve,n > 0.

t<n
Setting now
a, (t) =log(E exp{rZ;}),
by the sub-additivity (5.3), we have that for any positive, A,
(5.10) a (s +1) <a;(s) +a(r).
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Consequently,
1 (1

(5.11) lim —a,(t) = Inf{—a,\(t)} =1L, < o0,

t—o0 =1\t
where the last inequality follows from (5.9). Note that

a; (1) = reyt>~4P 1 log(E expl—ayi)),
with 2 —d/B < 1, so that (5.11) implies that for aiy> 0,

1

(5.12) tll)moo A log(E exp{—Ay:}) = L) < oo.

It follows from Theorem 8, immediately following, thdt,, > O for some O<
Ao < 0. Using the scaling (1.10), it follows from (5.12) that for any- 0,

(5.13) lim_ % log(E exp{—Ay,}) = AP/ 6=y FI@=Dp,

It then follows by the Gartner—Ellis theorem, compare (4.13) and (4.14), that
(5.14) timoot_llog P(—y, > 1) = —by,
with

by = <d — ,3> <2,3 -~ d><2ﬂ—d>/<d—ﬂ>kﬂ/(dﬁ).
B BLi, 0

Note that it follows from (5.13) thaﬂgﬂ/(zﬁ_d)Lko is independent of the
particularig chosen so the same will be truelgf. This will complete the proof
of Theorem 2 whem8 <d. O

THEOREM 8. Let X, be a symmetric stable process of order 8 € (2d/3,d)
in RY. There exist constants c¢1, ¢2 > 0 such that

(5.15) P(—yy > c1n) > c5.

The idea of the proof is the following. Let be small,M = ¢~ and Oy
the square with one diagonal going from the paiMk — 4¢,0) to the point
(M(k + 1) + 4¢,0). By scaling and some easy estimates, we show that, for
eachk, there is probability on the order efto a power thatX, lies in Q; when
t € [k, k + 1] and also the renormalized self-intersection local time of that portion
of the path ofX is not too small. Provided the intersection local times between
consecutive portions of the path are not too large, we can then use the Markov
propertyn times to obtain the result of Theorem 8. The intersection local time of
consecutive portions of the path may be viewed as the intersection local time of
two independent stable processes. We use the representation of this intersection
local time as an additive functional along the lines of [3] to obtain a suitable upper
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bound on its size, except for a set whose probability decreases faster than any
power ofe. We then take sufficiently small, but fixed.

PrROOF OF THEOREM 8. Let A(I;J) denote the intersection local time
betweenX (I) and X(J), where X(I) = {X,:s € I} for an intervall and let
I"(I) denote the renormalized self-intersection local tim& 6f). ¢ < 1/4 will be
chosen later. Seif = 1. First of all, =" ([0, 1]) has mean 0 and is not identically
zero. So there exist positive constarniskz not depending oa such that

P(—F([O, 1)) > Kl) > K2.
By scaling,
P(—F([ez, 1-62) > k1/2) > k2.

If we chooses small enough, by the fact that the pathsXfare right continuous
with left limits,

P( sup | Xy — X,2| > M/2> <ko/2.

g2<g<1—g?

Therefore, if

Ey= {—r([ez, 1-¢?) >k1/2. sup |X;—X.2| < M/Z}»

g2<s<l1—g2
then
P(E1) > k2/2.

Let B(x,r) denote the open ball iR? of radiusr centered at. Let Sy =
B((Mk,0), £2), that is, the ball with center at the poia#k, 0) and radiuse,
and let O, be the square which has one diagonal going fr@gak — 4¢, 0) to
(M (k + 1) + 4¢, 0). Let zx be the center oDy, that is,zx = (M (k + ), 0). Let

Eo={X,2 € B(zx, 1) andX;, € 0y for s € [0, £2]}.
Let
E3={X,2 € Si;1andX, € 0y for s € [0, £2]}.

As usual, we usé* for the probability when our processis started at.

LEMMA 3. (a)There exists c3 such that if x € S; and ¢ is sufficiently small,
then

PY(Ey) > 0384+’3.
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(b) If x € B(z, M/2) and ¢ is sufficiently small, then
P*(E3) > C386+/3.
PrROOF (a) Lett = inf{¢:|X; — Xo| > ¢/2}. By scaling and the fact that

B > 1, we haveP (sup .2 | X5 — Xo| > ¢/2) — 0 ase — 0. So by taking: small
enough, we may assume that

Pt <&?) <1/2

for all x.
By the Lévy system formula for right continuous stable processes (see [4],
Proposition 2.3, e.g.),

P*(X, pe2 € B(zk, 1/2))

>EY ) I(x,_eB(Mk.0).e/2)L(X,eB(4.1/2)

s<TAg2

TAE2
=Ex/ f n(Xs,z)dzds,
0 B(zx,1/2)

wheren(y, z) = caly — z|72F. Sincen(y, z) is bounded below bysM %~ if
y € B((Mk, 0), 2¢) andz € B(zx, 1/2), we see

P* (X, pe2 € B(zk, 1/2))

(5.17) > cae? P EX [t A 2] > cae®TPEX[62 1 > €2

(5.16)

=ca?P? P (7 > £2) > 3P /2.

We noted in the first paragraph of the proof that there is probability at l¢ast 1
thatX; moves no more thasy 2 in times2. So by using the strong Markov property
attimer, there is probability at leaste*+# /4 thatX, exits S, by timee2, jumps to
B(zx, 1/2), and then stays i®(z;, 1) until time t + £2. But this event is contained
in E5.

(b) The proof of (b) is similar. Using the Lévy system formula,

P*(X, 2 € B(M((k+1),0),¢/2))

TAE2
ZEX/ / n(Xy,z)dzds.
0 B((M(k+1),0),6/2)

This, in turn, is greater than or equal to
c5e?M 2 PEX[1 A 2] > cge®P.

We choses so that the probability thaX, moves no more thags/2 in time e? is
at least ¥2. Using the strong Markov property at time there is probability at
leastcge®tP /2 that the process exitB(x, £/2) by time 2, jumps to B((M (k +
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1), 0), ¢/2), and then moves no more thay in time ¢2. This event is contained
in E3, and (b) follows. This completes the proof of Lemma 81
Let
Ey=Ezo06; .2={X1€ S41andX, e Oy fors e [1—¢2,1]}.
Using Lemma 3 and the Markov property at timésand 1— &2,
(5.18) P*(ExN E2N E}) > 3% p)2.
Let
E4={T'[0,5%] > «1/18},
Es={I[1—¢% 1] > x1/16},
Es={A([0,67]; [¢%, 1]) > «1/16},
E7={A([0,1—¢%];[1 -2 1]) > k1/16).

(5.19)

LEMMA 4. Thereexist c7, cg and b not depending on e such that

P(E4) + P(Es) + P(Eg) + P(E7) < ce™ /<"

ProOF The estimates forE; and Es follow from the scaling (1.10)
and (1.14). By (2.16),

(5.20) P(A([0,1];[1, 1 +a]) > 1) < Cge—qokﬁ/"/aﬁ/”*lm‘

This and scaling give us the desired estimatesHgand E7. This completes the
proof of Lemma 4. [

Recall that thexccupation measure 1X is defined as
t
p )= [ 14X ds

for all Borel setsA C R?. If py(x) is the probability density function fak, and
u(x) = [o° ps(x)ds is the O-potential density fax, it is easily checked that

(5.21) E* (i) =n! [ [T utx —xi-0aC) di
j=1

wherexg = x. Hence, if

(5.22) ca=sup [ ulx = LAy,
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we have that SUpE~ ({nX (4)}") < n!c and, thus,
SUPE™ (XPliso(4)/2¢4) = 2
so that, by Chebyshey,
(5.23) S)LCJpr (X (A) > 20ca) < 27

LEMMA 5. Let§ € (0,28 —2) and M > 2. There exist constants ¢11 and c12
depending only on M and § such that

nX (B(x,r))

(5.24) P( sup v

> )») < C]_]_Mze_clz)‘.
[x|<M,0<r<1

PROOF.  First fix x andr. Sinceu(y — z) < c13ly — z/#72, using symmetry,
cB(x.r) IS bounded by

/ c13lx — Z|ﬂ_2dz = C14r'6.
B(x,r)

Applying (5.23),
(5.25) P(;Lfo(B(x, r)) > )Lrﬁ_‘s) < 2154 "
Suppose now thatX (B(x, r)) > Arf =% for some|x| < M and some € (0, 1).

Choosek such that 2¥—1 < < 2% and choose’ so that both coordinates of
are integer multiples of % and|x — x’| < 2=%*1. Therefore,

Mg(o(B(x/’ 2—k+3)) > ClG)"(Z_k+3)ﬂ_59

wherec1 does not depend dn
Since there are at most7M22% points inB(0, 2M) such that both coordinates
are integer multiples of Z, then if 27—1 < < 27k,

X
(5.26) P( sup Hoo(B(x, 1))

2—8k
|x|<M rp=? '

> C]_G)»> < C';]_gZZkMze_clB)L

Summing the right-hand side of (5.26) ovefrom —4 to oo yields the right-hand
side of (5.24). This completes the proof of Lemma &I

By Lemma 5, it follows that

X
(5.27) P( sup HeoBLLT))

e <M.0<r<1 B3 > K1|092(1/g)/8> < 63810+25K2/4
x|=M,0<r=<

if £ is small enough.
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Let 1, (A) = [ La(X,) ds, set

Dy = {Xk € Sk, Xg+1 € Sg+1, and fork <s <k + 1, X; € Oy,

X B(x,r
~T[0,1] = k1/4,  Sup M
[x|<M,0<r<1 r‘B

< 1log’(1/e)/8},
and recall that
Fr=0(Xy;v=<k).
By (5.18), Lemma 4, (5.27) and the Markov property,
(5.28) P(Di|Fi) > c10e2%ip/4  onDy_1.
Let
Fie ={A(lk — 1, k]; [k, k + 1]) <«1/8}, Fo=1,
and

L, =D, NFy.

LEMMA 6. Lets e (0,28 —2). We have

(5.29) P(F{ N DelF0) < cae™ " on N ;.

PrROOE Whenk = 0, there is nothing to prove, so let us suppése 1. As
before,A([k — 1, k]; [k, k + 1]) has the distribution of1, and using the properties
of Dy_1, Dy and the Markov property, we have, recalling (2.1),

P(F¢ N Dy Fo)
(5.30)

1,1
< sup P§< lim f / fo(Xs — X;)Jle (X5)drds > K]_/S),
x€eSk, X' €D, p—0Jo Jo

where Py denotes probability with respect to the proc&ssvhile the independent
processX’ is fixed, and

Dy = {uf/(') is supported orQ;—1,

b'd B
sup W < Kllogz(l/s)/S},
|x|<M,0<r<1 r
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In (5.30) we can and will takef to be supported inB(0,1). To bound the
probability in (5.30), we note that

1,1
lim / / fo(Xs — X1, (Xs)drds
»—0Jo Jo

o rl

gliminf/ / Fo(Xy — X))o, (Xy)dr ds
»—0 Jo Jo

and, by Fatou,

- . w l / n
E§({I|Ln%|gf/0 /0 fp(XS—Xr)]le(Xs)drds} )

n
Himi .y el . . .
(5-31) = |ILn_18f v/[O, 1)nd ./Rnd jl_[:lu(XZ XZ_l)f'O (x, Xri)]le (xi) dx; dri

n

= ntliminf [ [Tt = i-00, 5 diey 3,
]:

with xg = x andduf'p(x) = fol fo(x — X)) drdx. As in the proof of (5.23), it then

follows thatP (Ff N Di|Fi) < caoe ™23/, where

(5.32) c= sup sup / u(y—X)Jle(y)de;)(y)-
O<p<exeQy_1NQk,X'eD;, R?

It is easily checked that ik’ € D;, then uniformly inp <e and O<r <1—¢,

(5.33) sup uf,(B(x,r) <crP~*log?(1/e)

|x|<M—¢
anduf'p is supported 0oy 1, = {z|inf,cp, ; lz—v| <¢}. SinceQi_1.N QO C
B((Mk, 0), 16¢), if we choosekg so that 32 > 270 > 16¢, we have that the right-
hand side of (5.32) is bounded by

o0

u(y = x)dug, ()
k=ko/;3(xa2k)\3(x,2kl) Y M1y

o0
<ca Yy @ 2uf (Bx,27h)
k=ko

o
<c25 ) 27kB=2)(27k)p=0
k=ko

o
= co5 Z 2—k(2,3—2—5) < C2682/3_2_8.
k=ko

(5.34)
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This completes the proof of Lemma 6]

If ¢ is small enough, we thus conclude from (5.28) and (5.29) that
k—1
(5.35) P(Li|F3) > c276'%%k/8  on () L;.
j=1

Takee sufficiently small, but now fix it, and letz = c276*#k»/8. We have
k k-1 k-1
P(ﬂ Lj> = E[P(Lkm); N LJ} ZK3P<m LJ->.
j=1 j=1 j=1

By induction,
n
P(ﬂ LJ-> > K.
j=1

On the eveniVf,, = ﬂ?zl L;, we have thaX € Oy if k <s <k + 1, and so there
are no intersections betweei(/;) andX (/) if |i — j| > 1, wherel; = [i,i + 1].
Furthermore, orM,,, we have

n

Y —TIy) > k1n/4,

k=0
while
n
> AUk Tevd) < kan/8.
k=0
Since

—T([0,n]) = Y T ) — Y AUk Iv1) = kan/8
k=0 k=0

on the eveni,, and P (M,) > 5, Theorem 8 is proved.[]
6. The lower tail; B=d. In this section we prove Theorem 2 in the
critical cases wher@g = d. This includes planar Brownian motion and the one-

dimensional symmetric Cauchy process.
By the last two lines of Theorem 6, we have

(6.1) E(a(s, 1)) = p1(0){(s + 1) log(s + 1) — slogs — rlogz}.
Write
(6.2) n: = —y; — p1(0)t logz.
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We have that)p = 0 and, as in the proof of (5.3), for anyr > 0, ns++ < ns + 15.¢,
wheren, ; = —y ({(u,v)|s <u <v <s+1t}) — p1(0)¢tlogr. For each fixed > 0,
{ns.v; v >0} is independent ofy,; u < s} andn, ; 4 n¢. So by the argument used
to obtain (5.9) and (5.10), we obtain

(6.3) E(exp{csupn,}> < 00 Ve >0,

<1

o)
csfonf 2 el gn]) vz

Therefore, there is a constanto < A < oo such that

0")-
")~

and

(6.4)

(6.5) lim t‘llogE<exp{
1—>0o0

or, equivalently,

1
6.6 lim 11 (E( p{__ })) — A
(6.6) [Jim 7~*log| 7 ex 0
Taker = n to be an integer. By scaling and Stirling’s formula,
(6.7) im 2o (( ')—1E<exp{ " })) A+1
. — n. — = .
n—oopn g pl(O) r1

By [12], Lemma 2.3,

1
6.8 lim r~1lo P(exp{— } > z) = _e¢ A 1l=_p
( ) t—00 g Pl(o) 71 ¢ ¥

or, equivalently,

(6.9) t[}moot‘llogP(—yl > p1(0)logr) = —L,

which proves (1.9). It remains to show thaj < oo. That by < oo for the

B =d = 2 case was shown in [2], Section 5. A very similar proof takes care of
the B =d = 1 case. Note that the proof in [2] does not rely on the continuity of
Brownian paths. Instead of th&'? scaling there, we now haveé scaling. Instead

of 1/(2r), we now havep; (0), which intheg = d = 1 case is equal to/xr. This
completes the proof of Theorem 201
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7. Thelimsup result.
PROOF OFTHEOREM 3. We begin with a lemma.
LEMMA 7. Ifa <ay, thereexists C < oo such that

(7.1) P(Supy, > ud/ﬁ) < Ce™ %, u>0.

t<1

ProoOF It follows from (4.8) and scaling that
(7.2) SUpP(y, > u’fy < Ce™, u>0.

t<1

LetI'([s, t]) ;= v {(u, v)|s <u <v <t}). Foranys <,
(7.3) vi —vs =v([0,s:5,t]) + T ([s,1]),

with y ([0, s 5. 11) < {ors 1—sJo and T ([s, 11) £ y;—.
Using (7.3), it then follows from (2.16) and (3.21) that for sofne 0,

B/d
Vi — Vs
(74) Sup E(exp{@‘m }) < 00,

s<t<1
(7.5) P(ly:r — ys| > ulBy < Ce_C“/(’_S){, u>0,

hence, by Chebyshev, that for some 0,

uniformly in 0<s <t <1, where¢ = 8/d — 1/2 > 0. Lemma 7 then follows
from the chaining argument used in the proof of Proposition 4.1 of [2].

It is now straightforward to use scaling and Borel-Cantelli to get the following:
LEMMA 8.

Vi —d/ﬂ
12=d/B) (log Iogt)d//8 =4y

(7.6) I|m sup a.s.

PROOF Let M > 1/ay. Chooses > 0 small andg > 1 close to 1 so that
M (ay — 2¢)/q% > 1. Lett, = q" and let

(7.7) C, {supys > 122" (M 1oglogr, _1)?/* }
s<ty
By Lemma 7 and scaling, the probability 6f, is bounded by

cre— @y =M1/t * loglogr, 1

By our choices ot andg, this is summable, so by Borel-Cantelli the probability
that C,, happens infinitely often is zero. To complete the proof, we point out that
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if y, > 12=4/P) (M loglogt)?/? for somet € [t,_1, 1,,], then the even€,, occurs.
This completes the proof of Lemma 8]

To finish the proof of Theorem 3 we prove the following:

LEMMA 9.

(7.8) lim sup Vi ~dlb s,

>

oo 1@=d]B) (loglogr)d/B = ¥

PROOF Leta > ay and leta” be the midpoint ofay , a). Then by (4.8),
(7.9) P(y1> (uloglogr)?/P) > cpe~nloglogr u> 0.

Let § > 0 be small enough so théat + §)a’/a < 1 and set, = "’ Recall that
(s, t]) 4 yr—s. Using (7.9) and scaling, it is straightforward to obtain

e d/B
> P(F sl > r,§2‘d/ﬂ>('°g'ﬂ) )=ce.

n=1 a

Using the fact that different pieces of the path of a stable process are independent
and Borel-Cantelli,

. C([ty—1,tn 1
(7.10) limsup (Zfd/ﬂ()[ L)) > —78
n—oo (loglogz,)4/F @

a.s.

Lete > 0. From (3.21), scaling and Borel-Cantelli, it follows that
(7.11) |00, ty_1D| = |y, | = O(er{?>=4/P (loglogz,) /) ass.
Since

Y, =T(0, 1, 1)

(7.12)
= ([ty-1, ta]) + T([O, t—1]) + ¥ ([0, ty—11; [tn—1, tn])

and y ([0, s1; [s, £]) 4 {as.1—s}to With o ,—s > 0, we have our result from (7.10),
(7.112), (7.12) and the fact, from Theorem 6, that
Ea; 14— 4 < Ea;, =cet> P = 0(t'?=4/P)(loglogt, ) /).

This completes the proof of Lemma 9

Lemmas 8 and 9 together imply Theorem &
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8. Theliminf result.

PROOF OF THEOREM 4. We consider first the case wheh < d. Let
D, = —y,. We begin with a lemma.

LEMMA 10. If b < by, thereexists C < oo such that

(8.1) P<SupD, > ud/ﬁ_1> < Cebu, u>0.

<1

ProOF It follows from (1.8) and scaling (1.10) that
(8.2) uleoou—l log P(D1 > u¥P~Y)y = —by,.
Scaling once more shows that, for any 0,
(8.3) P(D; > ud/P=1 < Ce~bu/t" u >0,
withn=2-d/B)/(d/B —1) > 0. For anys < ¢,
D; — Dy = —y([0, 535, 1]) — I'([s, 1])
(8.4) < E(ds,1—5) — I ([s,1])
<cy(t =927 —T(ls5,1]),
with —T"([s, ¢]) := D;_; and we have used Theorem 6
(8.5) E(as —s)=cyls? 2P 4 (1 —)% %P —1272F) < ¢y (t — 5)°72/P.
Lemma 10 then follows from the chaining argument used in the proof of
Proposition 4.1 of [2]. [

It is now straightforward to use scaling and Borel-Cantelli to get the following:

LEMMA 11.

D _ _
(8.6) lim sup L <p, @PD

M SR @/ (loglogn@/F—1 =~ ¥ as.

PROOF Let M > 1/by. Chooses > 0 small andg > 1 close to 1 so that
M(by —2¢)/q” > 1. Lett, =q" and let

(8.7) Cp= {sust > 1277 (M 1og Iogtn_l)d/ﬁ‘l}.
S=<ty
By Lemma 7 and scaling, the probability 6f, is bounded by

cre~ by =eM(t—1/tm)"loglogr, 1
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By our choices ot andg, this is summable, so by Borel-Cantelli the probability
thatC,, happens infinitely often is zero. To complete the proof, we point out that if
D, > t?=4/B) (M loglogr)?/—1 for somer € [1,_1, t,], then the even€,, occurs.
This completes the proof of Lemma 1107

To finish the proof of Theorem 4 wheth < d, we prove the next lemma.

LEMMA 12.

. D _ _
(8.8) lim sup L > p @A

M P @=a/p) (loglogn)@/F—1 = ¥ as.

PROOF Letb > by and lety’ be the midpoint ofb,, b). Then by (8.2),
(8.9) P(D1 > (uloglogr)/#=1) = cpe~tuloglosr — ~ .

Let § > 0 be small enough so thét + §)b'/b < 1 and set, = "’ Recall that
C'([s,t]) 4 y:—s. Using (8.9) and scaling, it is straightforward to obtain

o0

d/B—1
> P(—F([tn_l, tal) > 1274/ (@) " ) — 0.
n=1

Using the fact that different pieces of the path of a stable process are independent
and Borel-Cantelli,

. _F([tn—latn]) 1
(8.10) limsup—— > — a.s.
n—oo 1274 (joglogr,)d/p-1 ~ b/F7L

n

Lete > 0. From (3.21), scaling and Borel-Cantelli, it follows that
(8.11) IT(0, tu—1Dl = Iy, ;| = O(er> P dloglogr,)*P~1)  as.
Note that

D;, = =T([0, 1,])

(8.12)
= _F([tn—l’ tn]) - F([ov tn—l]) - )/([0, tn—l]; [tn—ls tn])
andy ([0, sT; [s, t1) < {as.1—s }o. Using (2.16),

P(a([0, ty—11; [tn—1, 1a]) > £274/P))

a([0, th-al; [th—1, taD _
(8.13) < P<(tn_1(tn —ltn_l))&—d/Zﬁ) > (t/tn_1)@ d/2/3))

< o~/ tin) P12

which is summable. Using Borel-Cantelli, we have
(8.14) ([0, ty1l; [ta—1, ta]) = 0 (132~ 4/P (loglogt, )/~ 1).
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Substituting this, (8.10) and (8.11) in (8.12) completes the proof of Lemma 12.

O

Lemmas 11 and 12 together imply Theorem 4 wifea d. The case o8 =d
follows from (6.9) and the proof of [2], Theorem 1.5]
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