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We study large deviations for the renormalized self-intersection local
time of d-dimensional stable processes of indexβ ∈ (2d/3, d]. We find a
difference between the upper and lower tail. In addition, we find that the
behavior of the lower tail depends critically on whetherβ < d or β = d.

1. Introduction. Let Xt be a nondegenerated-dimensional stable process of
indexβ. We assume thatXt is symmetric, that is,Xt

d= −Xt , but we do not assume
it is spherically symmetric. Thus,

E(eiλ·Xt ) = e−tψ(λ),(1.1)

where ψ(λ) ≥ 0 is continuous, positively homogeneous of degreeβ, that is,
ψ(rλ) = rβψ(λ) for eachr ≥ 0, ψ(−λ) = ψ(λ) and for some 0< c < C < ∞,

c|λ|β ≤ ψ(λ) ≤ C|λ|β.(1.2)

In studying the self intersections of{Xt ; t ≥ 0}, one is naturally led to try to give
meaning to the formal expression∫ t

0

∫ s

0
δ0(Xs − Xr)dr ds,(1.3)

whereδ0(x) is the Dirac delta “function.” Let{fε(x); ε > 0} be an approximate
identity and set ∫ t

0

∫ s

0
fε(Xs − Xr)dr ds.(1.4)

Whenβ > d, so that necessarilyd = 1 and{Xt ; t ≥ 0} has local times{Lx
t ; (x, t) ∈

R1 × R1+}, (1.4) converges asε → 0 to 1
2

∫
(Lx

t )
2 dx. Large deviations for this

object have been studied in [7].
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In this paper we assume thatβ ≤ d. In this case (1.4) blows up asε → 0. We
consider instead

γt,ε =
∫ t

0

∫ s

0
fε(Xs − Xr)dr ds − E

{∫ t

0

∫ s

0
fε(Xs − Xr)dr ds

}
(1.5)

and let

γt = lim
ε→0

γt,ε(1.6)

whenever the limit exists. It is known that this happens if (and only if )β > 2d/3,
and thenγt is continuous int almost surely [22, 23, 26]. In this case we refer toγt

as the renormalized self-intersection local time for the processXt . Renormalized
self-intersection local time, originally studied by Varadhan [28] for its role in
quantum field theory, turns out to be the right tool for the solution of certain
“classical” problems such as the asymptotic expansion of the area of the Wiener
and stable sausages in the plane and fluctuations of the range of stable random
walks. See [14, 15, 18, 25]. In [27] we show thatγt can be characterized as the
continuous process of zero quadratic variation in the decomposition of a natural
Dirichlet process. For further work on renormalized self-intersection local times,
see [3, 10, 16, 21, 26].

The goal of this paper is to study the large deviations ofγt , generalizing the
recent work for planar Brownian motion of the first two authors [2].

THEOREM 1. Let Xt be a symmetric stable process of order 2d/3 < β ≤ d

in Rd . Then, for some 0< aψ < ∞ and any h > 0,

lim
t→∞

1

t
logP(γt ≥ ht2) = −hβ/daψ .(1.7)

The constantaψ is described in Section 4 and is related to the best possible
constant in a Gagliardo–Nirenberg type inequality.

γt is not symmetric. In fact, the lower tail has very different behavior.

THEOREM 2. Let Xt be a symmetric stable process of order β > 2d/3 in Rd .
Then we can find some 0< bψ < ∞ such that if β < d,

lim
t→∞

1

t
logP(−γt ≥ t) = −bψ,(1.8)

while if β = d,

lim
t→∞

1

t
logP

(−γ1 ≥ p1(0) logt
) = −bψ,(1.9)

where pt(x) is the continuous density function for Xt .
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We are unable to identify the constant 0< bψ < ∞.

Using the scaling property{X(ts); s ≥ 0} d= t1/β{X(s); s ≥ 0} of the stable
process, it is easy to check that

γt
d= t2−d/βγ1.(1.10)

Thus, (1.7)–(1.9) are equivalent to

lim
h→∞

1

hβ/d
logP(γ1 ≥ h) = −aψ,(1.11)

lim
h→∞

1

hβ/(d−β)
logP(−γ1 ≥ h) = −bψ, β ∈ (2d/3, d),(1.12)

lim
h→∞

1

ep1(0)h
logP(−γ1 ≥ h) = −bψ, β = d.(1.13)

Equations (1.11) and (1.12) show that

lim
h→∞

1

h
logP(|γ1|β/d ≥ h) = −aψ,(1.14)

which implies that

E
(
eλ|γ1|β/d )< ∞, if λ < a−1

ψ ,

= ∞, if λ > a−1
ψ .

(1.15)

Our large deviation results lead to the following law of the iterated logarithm
(LIL) type results.

THEOREM 3. Let Xt be a symmetric stable process of order 2d/3 < β ≤ d

in Rd . Then

lim sup
t→∞

γt

t(2−d/β)(log logt)d/β
= a

−d/β
ψ a.s.(1.16)

THEOREM 4. Let Xt be a symmetric stable process of order β > 2d/3 in Rd .
If β < d, then

lim inf
t→∞

γt

t(2−d/β)(log logt)d/β−1 = −b
−(d/β−1)
ψ a.s.,(1.17)

while if β = d, then

lim inf
t→∞

1

t log log logt
γt = −p1(0) a.s.(1.18)

The methods needed for this paper are very different from those used in [2] for
planar Brownian motion. In that case, and more generally whenβ = d, the upper
bound for large deviations forγt comes from a soft argument involving scaling.
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This argument breaks down whenβ < d. Instead, we obtain the upper bound using
careful moment arguments developed in Sections 2 and 3.

Another major difference between this paper and [2] is in the proof of the
lower bound for large deviations for−γt when β < d. Suppose we divide the
time interval[0, n] into subintervalsIk = [k, k + 1], k = 0, . . . , n − 1, let �(Ik)

denote renormalized self-intersection local time for the piece of the path generated
by times inIk , and letA(Ij ; Ik) denote the intersection local time for the two
pieces generated by times inIj andIk whenj �= k. Then the major contribution
to the renormalized self-intersection local time for planar Brownian motion on the
interval [0, n] comes from

∑
j<k[A(Ij ; Ik) − EA(Ij ; Ik)]; the contribution from∑

k �(Ik) is smaller. In contrast, whenβ < d, both contributions are of the same
order of magnitude. As a result, the lower bound for−γt whenβ < d requires a
much more delicate argument.

Our paper is organized as follows. In Section 2 we obtain bounds on exponential
moments of the intersection local time for two independent processes, which is
then used in Section 3, following an approach due to Le Gall, to obtain bounds on
exponential moments of the renormalized self-intersection local timeγt , and, in
particular, to obtain an exponential approximation ofγt by its regularizationγt,ε.
Together with some results from [8], this allows us to prove Theorem 1
in Section 4. In Sections 5 and 6 we prove Theorem 2 on the lower tail ofγt .
Finally, these results are used in Sections 7 and 8 to prove the LILs of Theorems 3
and 4, respectively.

2. Intersection local times. Let Xt,X
′
t be two independent copies of the

symmetric stable process of orderβ in Rd with characteristic exponentψ and
set

αt,ε
def=

∫ t

0

∫ t

0

∫
Rd

fε(Xs − X′
r ) dr ds,(2.1)

wherefε is an approximateδ—function at zero, that is,fε(x) = f (x/ε)/εd with
f ∈ S(Rd) a positive, symmetric function with

∫
f dx = 1. If f̂ (p) denotes the

Fourier transform off , then f̂ (εp) is the Fourier transform offε and we have,
from (2.1),

αt,ε = (2π)−d
∫ t

0

∫ t

0

∫
Rd

eip·(Xs−X′
r )f̂ (εp)dp dr ds.(2.2)

THEOREM 5. Let Xt,X
′
t be independent copies of a symmetric stable process

of order d/2< β ≤ d in Rd . Then for all ρ > 0 sufficiently small, we can find some
θ > 0 such that

sup
ε,ε′,t>0

E

(
exp

{
θ

∣∣∣∣ αt,ε − αt,ε′

|ε − ε′|ρt2−(d+ρ)/β

∣∣∣∣β/(d+ρ)})
< ∞.(2.3)
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Furthermore,

lim
θ→0

sup
ε,ε′,t>0

E

(
exp

{
θ

∣∣∣∣ αt,ε − αt,ε′

|ε − ε′|ρt2−(d+ρ)/β

∣∣∣∣β/(d+ρ)})
= 1.(2.4)

PROOF. From (2.2), we have that

αt,ε − αt,ε′ = (2π)−d
∫ t

0

∫ t

0

∫
Rd

eip·(Xs−X′
r )

(
f̂ (εp) − f̂ (ε′p)

)
dp dr ds.(2.5)

Hence,

E({αt,ε − αt,ε′ }n)
= (2π)−nd

∫
[0,t]n

∫
[0,t]n

∫
Rdn

E
(
e
i
∑n

k=1 pk(Xsk
−X′

rk
))

×
n∏

j=1

{f̂ (εpj ) − f̂ (ε′pj )}dpj drj dsj .

(2.6)

We then use the decomposition

[0, t]n × [0, t]n = ⋃
π,π ′

Dn(π,π ′),

where the union runs over all pairs of permutationsπ,π ′ of {1, . . . , n} and
Dn(π,π ′) = {(r1, . . . , rn, s1, . . . , sn)|rπ1 < · · · < rπn ≤ t, sπ ′

1
< · · · < sπ ′

n
≤ t}.

Using this, we then obtain

E({αt,ε − αt,ε′ }n)
= (2π)−nd

∑
π,π ′

∫
Dn(π,π ′)

∫
Rdn

E
(
e
i
∑n

k=1 pk(Xsk
−X′

rk
))

×
n∏

j=1

{f̂ (εpj ) − f̂ (ε′pj )}dpj drj dsj .

(2.7)

OnDn(π,π ′), we can write
n∑

k=1

pk

(
Xsk − X′

rk

)
=

n∑
k=1

uπ,k

(
Xrπk

− Xrπk−1

) −
n∑

k=1

uπ ′,k
(
X′

sπ ′
k

− X′
sπ ′

k−1

)
,

(2.8)

where, for any permutationπ , we setuπ,k = ∑n
j=k pπj

. Hence, onDn(π,π ′),

E
(
e
i
∑n

k=1 pk(Xsk
−X′

rk
))

= e
−∑n

k=1 ψ(uπ,k)(rπk
−rπk−1)

e
−∑n

k=1 ψ(uπ ′,k)(sπ ′
k
−sπ ′

k−1
)
.

(2.9)
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We will use the bound|f̂ (εpj )− f̂ (ε′pj )| ≤ C|ε − ε′|ρ |pj |ρ for anyρ ≤ 1. Using
the Cauchy–Schwarz inequality, we have

∫
Rdn

E
(
e
i
∑n

k=1 pk(Xsk
−X′

rk
)) n∏

j=1

|pj |ρ dpj

≤
(∫

Rdn
e
−2

∑n
k=1 ψ(uπ,k)(rπk

−rπk−1)
n∏

j=1

|pj |ρ dpj

)1/2

×
(∫

Rdn
e
−2

∑n
k=1 ψ(uπ ′,k)(sπ ′

k
−sπ ′

k−1
)

n∏
j=1

|pj |ρ dpj

)1/2

.

(2.10)

Now
∏n

j=1 |pj | = ∏n
j=1 |pπj

| = ∏n
j=1 |uπ,j − uπ,j+1| ≤ ∏n

j=1 |uπ,j | + |uπ,j+1|
so that, using (1.2) for the second inequality,

∫
R2n

e
−2

∑n
k=1 ψ(uπ,k)(rπk

−rπk−1)
n∏

j=1

|pj |ρ dpj

≤ ∑
h

∫
Rn

e
−2

∑n
k=1 ψ(uπ,k)(rπk

−rπk−1)
n∏

j=1

|uπ,j |hjρ duπ,j

≤ ∑
h

∫
Rn

e
−c

∑n
k=1 |uπ,k |β(rπk

−rπk−1)
n∏

j=1

|uπ,j |hjρ duπ,j

≤ Cn
∑
h

n∏
j=1

(
rπk

− rπk−1

)−(d+hjρ)/β
,

(2.11)

where the sum runs over allh = (h1, . . . , hn) such that eachhj = 0,1 or 2 and∑n
j=1 hj = n.
Hence, takingρ > 0 sufficiently small that(d + 2ρ)/2β < 1, we have

E

(∣∣∣∣αt,ε − αt,ε′

|ε − ε′|ρ
∣∣∣∣n)

≤ Cn(n!)2

(∑
h

∫
r1<···<rn≤t

n∏
j=1

(rj − rj−1)
−(d+hjρ)/2β drj

)2

≤ Cn

(
tn(1−(d+ρ)/2β) n!

�(n(1− (d + ρ)/2β))

)2

≤ Cnt2n(1−(d+ρ)/2β)(n!)(d+ρ)/β.

(2.12)
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Hence, by Hölder’s inequality,

E

(∣∣∣∣ αt,ε − αt,ε′

|ε − ε′|ρt2−(d+ρ)/β

∣∣∣∣nβ/(d+ρ))
≤ E

(∣∣∣∣ αt,ε − αt,ε′

|ε − ε′|ρ t2−(d+ρ)/β

∣∣∣∣n)β/(d+ρ)

≤ Cnn!.
(2.13)

Theorem 5 follows easily from this.�
If we set

αs,t,ε
def=

∫ s

0

∫ t

0
fε(Xs − X′

r ) dr ds,(2.14)

then by the same method we can show that

αs,t = lim
ε→0

αs,t,ε(2.15)

exists a.s. and in allLp spaces and for someθ > 0,

sup
s,t>0

E

(
exp

{
θ

∣∣∣∣ αs,t

(st)1−d/2β

∣∣∣∣β/d})
< ∞.(2.16)

Let pt(x) denote the density function forXt started at the origin.

THEOREM 6. Let Xt,X
′
t be independent copies of a symmetric stable process

of order d/2 < β < d in Rd . Let P (x0,y0) be the joint law of (Xt ,X
′
t ) when Xt is

started at x0 and X′
t is started at y0. Then

E(x0,y0)(αs,t ) ≤ cψ [s2−d/β + t2−d/β − (s + t)2−d/β ],(2.17)

where

cψ = p1(0)

(d/β − 1)(2− d/β)
.(2.18)

If x0 = y0, then we have equality in (2.17).
If β = d, then we obtain

E(x0,y0)(αs,t ) ≤ p1(0)[(s + t) log(s + t) − t log t − s logs](2.19)

with equality if x0 = y0.

PROOF. We have

E(x0,y0)

(∫ s

0

∫ t

0
fε(Xr − X′

u) dr du

)
=

∫ s

0

∫ t

0

∫
fε(x − y)pr(x − x0)pu(y − y0) dx dy dr du

=
∫ s

0

∫ t

0

∫
fε(x)pr

(
x + y − (x0 − y0)

)
pu(y) dx dy dr du

=
∫ s

0

∫ t

0

∫
fε(x)pr+u

(
x − (x0 − y0)

)
dx dr du,

(2.20)
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where the last line follows from the semigroup property. Lettingε → 0 and using
the fact that (2.15) converges inL1,

E(x0,y0)(αs,t ) =
∫ s

0

∫ t

0
pr+u(x0 − y0) dr du.

Using symmetry, the right-hand side is less than or equal to∫ s

0

∫ t

0

p1(0)

(r + u)d/β
dr du

with equality whenx0 = y0. Some routine calculus completes the proof.�

3. Renormalized self-intersection local times. Let Xt be a symmetric stable
process of orderβ in Rd . For any random variableY , we set{Y }0 = Y − E(Y ).
For each bounded Borel setB ⊆ R2+, let

γε(B) =
{∫

B

∫
fε(Xs − Xr)dr ds

}
0
.(3.1)

We setγt,ε = γε(Bt ), whereBt = {(r, s) ∈ R2+|0≤ r ≤ s ≤ t}.
Using the scalingXλs

d= λ1/βXs andfλε(x) = 1
λd fε(x/λ), we have

γε(B)
d= λ−(2−d/β)γλ1/βε(λB).(3.2)

THEOREM 7. Let Xt be a symmetric stable process of order β > 2d/3 in Rd .
Then for all ρ > 0 sufficiently small, we can find some θ > 0 such that

sup
ε,ε′,t>0

E

(
exp

{
θ

∣∣∣∣ γt,ε − γt,ε′

|ε − ε′|ρt2−(d+ρ)/β

∣∣∣∣β/(d+ρ)})
< ∞.(3.3)

PROOF. Taking λ = 1/t and B = Bt in (3.2), we see that it suffices to
prove (3.3) whent = 1. We adapt a technique pioneered by Le Gall [17].

Let

An
k = [(2k − 2)2−n, (2k − 1)2−n] × [(2k − 1)2−n, (2k)2−n].(3.4)

Note thatB1 = ⋃∞
n=1

⋃2n−1

k=1 An
k so that, for anyε > 0,

γ1,ε =
∞∑

n=1

2n−1∑
k=1

γε(A
n
k).(3.5)

We will use the following lemma whose proof is given at the end of this section.

LEMMA 1. Let 0 < p ≤ 1 and let {Yk(ζ )}k≥1 be a family (indexed by ζ ) of
sequences of i.i.d. real valued random functions such that E(Yk(ζ )) = 0 and

lim
θ→0

sup
ζ

Eeθ |Y1(ζ )|p = 1.(3.6)
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Then for some λ > 0,

sup
n,ζ

E exp

{
λ

∣∣∣∣∣
n∑

k=1

Yk(ζ )/
√

n

∣∣∣∣∣
p}

< ∞.(3.7)

By (2.4), for someρ > 0,

lim
θ→0

sup
ε,ε′>0

E

(
exp

{
θ

∣∣∣∣γε(A
1
1) − γε′(A1

1)

|ε − ε′|ρ
∣∣∣∣β/(d+ρ)})

= 1.(3.8)

Hence, by Lemma 1, for someλ > 0,

eφ := sup
N,ε,ε′>0

(
E

(
exp

{
λ

∣∣∣∣∣
2N−1∑
k=1

{
γε

(
2(N−1)AN

k

) − γε′
(
2(N−1)AN

k

)}

× (
2(N−1)/2|ε − ε′|ρ)−1

∣∣∣∣∣
β/(d+ρ)}))(3.9)

is finite.
Sinceβ > 2

3d, for ρ > 0 sufficiently small,

a := 3
2β/(d + ρ) − 1> 0.(3.10)

Write

b1 = λ2−a and bN = λ2−a
N∏

j=2

(1− 2−aj ), N = 2,3, . . . .(3.11)

Then for any integerN ≥ 1, by Hölder’s inequality,

�ε,ε′,N := E

(
exp

{
bN

∣∣∣∣
∑N

n=1
∑2n−1

k=1 {γε(A
n
k) − γε′(An

k)}
|ε − ε′|ρ

∣∣∣∣β/(d+ρ)})
≤

(
E

(
exp

{
bN

(1− 2−aN)

×
∣∣∣∣
∑N−1

n=1
∑2n−1

k=1 {γε(A
n
k) − γε′(An

k)}
|ε − ε′|ρ

∣∣∣∣β/(d+ρ)}))1−2−aN

×
(
E

(
exp

{
bN2aN

∣∣∣∣
∑2N−1

k=1 {γε(A
N
k ) − γε′(AN

k )}
|ε − ε′|ρ

∣∣∣∣β/(d+ρ)}))2−aN

.

(3.12)
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Takingλ = 2N−1 in (3.2), we see that

2N−1∑
k=1

{γε(A
N
k ) − γε′(AN

k )}

d= 2−(2−d/β)(N−1)

×
2N−1∑
k=1

{
γε2(N−1)/β

(
2(N−1)AN

k

) − γ2(N−1)/βε′
(
2(N−1)AN

k

)}
.

(3.13)

Using (3.10), we note that(
2− d

β

)
− ρ

β
− a

(d + ρ)

β
= 1

2
.(3.14)

Hence,

2aN

∣∣∣∣
∑2N−1

k=1 {γε(A
N
k ) − γε′(AN

k )}
|ε − ε′|ρ

∣∣∣∣β/(d+ρ)

≤ 2a

∣∣∣∣
∑2N−1

k=1 {γε2(N−1)/β (2(N−1)AN
k ) − γε′2(N−1)/β (2(N−1)AN

k )}
2(N−1)/2|ε2(N−1)/β − ε′2(N−1)/β |ρ

∣∣∣∣β/(d+ρ)
(3.15)

in law. Using this, the finiteness of (3.9) and the fact thatbN2a ≤ λ for the last line
of (3.12), and (3.11) and the fact that 1− 2−aN < 1 for the second line of (3.12),
we have that

�ε,ε′,N ≤ �ε,ε′,N−1 exp{φ2−aN }.(3.16)

Inductively,

�ε,ε′,N ≤ exp{φ2−a(1− 2−a)−1}.
LettingN → ∞, Theorem 7 follows by (3.5) and Fatou’s lemma.�

It follows from Theorem 7 and Kolmogorov’s continuity theorem that

γt := lim
ε→0

γε,t(3.17)

exists a.s. and in allLp spaces.
Furthermore, it follows from Theorem 7 that for someρ, θ > 0,

sup
ε,t>0

E

(
exp

{
θ

∣∣∣∣ γt − γt,ε

ερt2−(d+ρ)/β

∣∣∣∣β/(d+ρ)})
< ∞.(3.18)
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Note that, since forρ > 0 sufficiently smallβ/(d +ρ) > 1/2, it follows that for
anyλ, δ > 0,

E(exp{λ|γt − γt,ε|1/2})
≤ eλδt + E

(
exp{λ|γt − γt,ε|1/2}1{|γt−γt,ε|≥(δt)2}

)
≤ eλδt + E

(
exp

{
λ

∣∣∣∣ γt − γt,ε

(δt)2−(d+ρ)/β

∣∣∣∣β/(d+ρ)})
.

(3.19)

Using (3.18), we conclude that, for anyλ > 0,

lim sup
ε→0

lim sup
t→∞

1

t
logE(exp{λ|γt − γt,ε|1/2}) = 0.(3.20)

For later reference we note that arguments similar to those used in proving
Theorem 7 show that, for someθ > 0,

sup
t>0

E

(
exp

{
θ

∣∣∣∣ γt

t2−d/β

∣∣∣∣β/d})
< ∞.(3.21)

(In fact, by scaling, we only need this fort = 1.)

PROOF OFLEMMA 1. Let ψp(x) = exp − 1 for largex and linear near the
origin so thatψp(x) is convex. We use‖ · ‖ψp to denote the norm of the Orlicz
spaceLψp with Young’s functionψp. Assumption (3.6) implies that, for some
M < ∞,

sup
ζ

‖Y1(ζ )‖ψp ≤ M.(3.22)

By Theorem 6.21 of [13], ifξk are i.i.d. copies of a mean zero random variable
ξ1 ∈ Lψp , then for some constantKp, depending only onp,∥∥∥∥∥

n∑
k=1

ξk

∥∥∥∥∥
ψp

≤ Kp

(∥∥∥∥∥
n∑

k=1

ξk

∥∥∥∥∥
L1

+
∥∥∥∥ max

1≤k≤n
|ξk|

∥∥∥∥
ψp

)
.

Using Proposition 4.3.1 of [11], for some constantCp, depending only onp,∥∥∥∥ max
1≤k≤n

|ξk|
∥∥∥∥
ψp

≤ Cp(logn)‖ξ1‖ψp.

Since theξk are i.i.d. and mean zero,∥∥∥∥∥
n∑

k=1

ξk

∥∥∥∥∥
L1

≤
∥∥∥∥∥

n∑
k=1

ξk

∥∥∥∥∥
L2

≤ √
n‖ξ1‖L2.

Thus, we have ∥∥∥∥∥
n∑

k=1

ξk/
√

n

∥∥∥∥∥
ψp

≤ Dp

(
‖ξ1‖L2 + logn√

n
‖ξ1‖ψp

)
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for some constantDp, depending only onp. Lemma 1 follows immediately from
this. �

4. Large deviations for renormalized self-intersection local times. Let

Eψ(f,f ) :=
∫
Rd

ψ(p)|f̂ (p)|2 dp(4.1)

and set

Fψ = {f ∈ L2(Rd)|‖f ‖2 = 1,Eψ(f,f ) < ∞}.(4.2)

The following lemma is proven is Section 2 of [8].

LEMMA 2. If β > d/2, then for any λ > 0,

Mψ(λ) := sup
f ∈Fψ

{λ‖f ‖2
4 − Eψ(f,f )} < ∞(4.3)

and

Mψ(λ) = λ2β/(2β−d)Mψ(1).(4.4)

Furthermore,

κψ := inf{C|‖f ‖2p ≤ C‖f ‖1−d/2β
2 [E1/2

ψ (f,f )]d/2β} < ∞(4.5)

and

Mψ(1) = 2β − d

d

(dκ2
ψ

2β

)2β/(2β−d)

.(4.6)

We writeMψ = Mψ(1) and let

Kψ = d

β

(
2β − d

2βMψ

)(2β−d)/d

.(4.7)

PROOF OFTHEOREM 1. We show that ifXt is a symmetric stable process of
orderβ > 2d/3 in Rd , then

lim
t→∞

1

t
logP(γt ≥ t2) = −2β/d−1Kψ.(4.8)

[This definesaψ of (1.7).]
Let h be a positive, symmetric function in the Schwarz classS(Rd) with∫

hdx = 1, and note thatf = h ∗ h has the same properties andfε = hε ∗ hε.
Using this, observe that∫ t

0

∫ s

0
fε(Xs − Xr)dr ds

= 1
2

∫ t

0

∫ t

0
fε(Xs − Xr)dr ds

= 1
2

∫
Rd

(∫ t

0
hε(Xs − x)ds

)2

dx,

(4.9)
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hence, by Theorem 5 of [8], for anyλ > 0,

lim
t→∞

1

t
logE exp

{
λ

(∫ t

0

∫ s

0
fε(Xs − Xr)dr ds

)1/2}

= lim
t→∞

1

t
logE exp

{
λ√
2

(∫
Rd

(∫ t

0
hε(Xs − x)ds

)2

dx

)1/2}

= sup
g∈Fψ

{
λ√
2

(∫
Rd

|(g2 ∗ hε)(x)|2 dx

)1/2

− Eψ(g, g)

}
.

(4.10)

For each fixedε > 0,

E

(∫ t

0

∫ s

0
fε(Xs − Xr)dr ds

)
=

∫
Rd

∫ t

0

∫ s

0
E

(
eip·(Xs−Xr)

)
dr dsf̂ (εp)dp

=
∫
Rd

∫ t

0

∫ s

0
e−(s−r)ψ(p) dr dsf̂ (εp)dp

≤ Ct

∫
Rd

1

|p|β f̂ (εp)dp = O(t)

(4.11)

if β < d. [Whenβ = d, we can easily obtainO(t1+δ) for anyδ > 0.] Using (3.20),
we conclude that for anyλ > 0,

lim sup
ε→0

lim sup
t→∞

1

t
logE

(
exp

{
λ

∣∣∣∣γt −
∫ t

0

∫ s

0
fε(Xs − Xr)dr ds

∣∣∣∣1/2})
= 0.(4.12)

Hence, using (4.10) together with the argument used to take theε → 0 limit
in [8] and then recalling (4.4),

lim
t→∞

1

t
logE exp{λ|γt |1/2}

= lim
ε→0

sup
g∈Fψ

{
λ√
2

(∫
Rd

|(g2 ∗ hε)(x)|2 dx

)1/2

− Eψ(g, g)

}
= sup

g∈Fψ

{
λ√
2

(∫
Rd

g4(x) dx

)1/2

− Eψ(g, g)

}

=
(

λ√
2

)2β/(2β−d)

Mψ.

(4.13)
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By the Gärtner–Ellis theorem ([9], Theorem 2.3.6)

lim
t→∞

1

t
logP(|γt | ≥ t2)

= −sup
λ>0

{
λ −

(
λ√
2

)2β/(2β−d)

Mψ

}

= −2β/d−1 d

β

(
2β − d

2βMψ

)(2β−d)/d

.

(4.14)

On the other hand, writingγt = γ +
t − γ −

t and using the positivity of∫ t
0

∫ s
0 fε(Xs − Xr)dr ds and (4.12), we have that for anyλ,

lim sup
t→∞

1

t
logE(exp{λ|γ −

t |1/2}) = 0.(4.15)

Theorem 1 then follows. �

5. The lower tail; β < d .

PROOF OFTHEOREM 2 WHEN β < d . For each bounded Borel setA ⊆ R2+,
we set γ (A) = limε→0 γε(A), recall (3.1). This limit is known to exist. Let
�([s, t]) := γ ({(u, v)|s ≤ u ≤ v ≤ t}) and with [0, s; s, t] = {(u, v)|0 ≤ u ≤ s ≤
v ≤ t} note thatγ ([0, s; s, t]) d= {αs,t−s}0. Thus, for any positives andt ,

γs+t = γs + �([s, s + t]) + γ ([0, s]; [s, s + t])
≥ γs + �([s, s + t]) − Eα([0, s]; [s, s + t]).(5.1)

Note thatγs ∈ Fs = σ(Xr,0 ≤ r ≤ s), �([s, s + t]) is independent ofFs , and
�([s, s + t]) has the same distribution asγt . Define

Zt = cψt2−d/β − γt , Zs,t = cψt2−d/β − �([s, s + t]).(5.2)

By the above,{Zs,t ; t ≥ 0} is independent of{Zu;u ≤ s} and we have{Zs,t ; t ≥
0} d= {Zt ; t ≥ 0}. Using (5.1) and Theorem 6, we have that for anys, t > 0,

Zs+t ≤ Zs + Zs,t .(5.3)

Givena > 0, define

τa = inf{s;Zs ≥ a}.
By continuity,Zτa = a on τa < ∞. Let

φ(h) = sup
0≤s,t≤1|t−s|≤h

|Zt − Zs |.(5.4)
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Fix a, b,n > 0 and 0< δ < a,b,

P

(
sup
t≤1

Zt ≥ a + b, φ(1/n) ≤ δ

)

=
n−2∑
j=0

P

(
sup
t≤1

Zt ≥ a + b,φ(1/n) ≤ δ, j/n ≤ τa < (j + 1)/n

)

≤
n−2∑
j=0

P

(
sup
t≤1

Z(j+1)/n,t ≥ b − δ, j/n ≤ τa < (j + 1)/n

)

=
n−2∑
j=0

P

(
sup
t≤1

Z(j+1)/n,t ≥ b − δ

)
P

(
j/n ≤ τa < (j + 1)/n

)
≤ P

(
sup
t≤1

Zt ≥ a

)
P

(
sup
t≤1

Zt ≥ b − δ

)
.

(5.5)

Using the continuity ofZs and first takingn → ∞ and thenδ → 0, we obtain

P

(
sup
t≤1

Zt ≥ a + b

)
≤ P

(
sup
t≤1

Zt ≥ a

)
P

(
sup
t≤1

Zt ≥ b

)
.(5.6)

Hence, there isc > 0 such that for someλ0 < ∞,

P

(
sup
t≤1

Zt ≥ λ

)
≤ e−cλ ∀λ > λ0,(5.7)

so that

E exp
{
c0 sup

t≤1
Zt

}
< ∞(5.8)

for somec0 > 0. Then by the sub-additivity (5.3) and what we have just proven,
there isc0 > 0 such that

E exp
{
c0 sup

t≤n
Zt

}
≤

(
E exp

{
c0 sup

t≤1
Zt

})n

< ∞

for all n. Then by the scaling (1.10), we see that (5.8) holds for allc0 > 0.
Therefore, we have

E exp
{
c sup

t≤n
{−γt }

}
< ∞ ∀ c, n > 0.(5.9)

Setting now

aλ(t) = log(E exp{λZt }),
by the sub-additivity (5.3), we have that for any positives, t, λ,

aλ(s + t) ≤ aλ(s) + aλ(t).(5.10)
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Consequently,

lim
t→∞

1

t
aλ(t) = inf

t≥1

{
1

t
aλ(t)

}
:= Lλ < ∞,(5.11)

where the last inequality follows from (5.9). Note that

aλ(t) = λcψt2−d/β + log(E exp{−λγt }),
with 2− d/β < 1, so that (5.11) implies that for anyλ > 0,

lim
t→∞

1

t
log(E exp{−λγt }) = Lλ < ∞.(5.12)

It follows from Theorem 8, immediately following, thatLλ0 > 0 for some 0<
λ0 < ∞. Using the scaling (1.10), it follows from (5.12) that for anyλ > 0,

lim
t→∞

1

t
log(E exp{−λγt }) = λβ/(2β−d)λ

−β/(2β−d)
0 Lλ0.(5.13)

It then follows by the Gärtner–Ellis theorem, compare (4.13) and (4.14), that

lim
t→∞ t−1 logP(−γt ≥ t) = −bψ,(5.14)

with

bψ =
(

d − β

β

)(
2β − d

βLλ0

)(2β−d)/(d−β)

λ
β/(d−β)
0 .

Note that it follows from (5.13) thatλ−β/(2β−d)
0 Lλ0 is independent of the

particularλ0 chosen so the same will be true ofbψ . This will complete the proof
of Theorem 2 whenβ < d. �

THEOREM 8. Let Xt be a symmetric stable process of order β ∈ (2d/3, d)

in Rd . There exist constants c1, c2 > 0 such that

P(−γn ≥ c1n) ≥ cn
2.(5.15)

The idea of the proof is the following. Letε be small,M = ε−1 and Qk

the square with one diagonal going from the point(Mk − 4ε,0) to the point
(M(k + 1) + 4ε,0). By scaling and some easy estimates, we show that, for
eachk, there is probability on the order ofε to a power thatXt lies in Qk when
t ∈ [k, k + 1] and also the renormalized self-intersection local time of that portion
of the path ofX is not too small. Provided the intersection local times between
consecutive portions of the path are not too large, we can then use the Markov
propertyn times to obtain the result of Theorem 8. The intersection local time of
consecutive portions of the path may be viewed as the intersection local time of
two independent stable processes. We use the representation of this intersection
local time as an additive functional along the lines of [3] to obtain a suitable upper
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bound on its size, except for a set whose probability decreases faster than any
power ofε. We then takeε sufficiently small, but fixed.

PROOF OF THEOREM 8. Let A(I ;J ) denote the intersection local time
betweenX(I) and X(J ), whereX(I) = {Xs : s ∈ I } for an intervalI and let
�(I) denote the renormalized self-intersection local time ofX(I). ε < 1/4 will be
chosen later. SetM = ε−1. First of all,−�([0,1]) has mean 0 and is not identically
zero. So there exist positive constantsκ1, κ2 not depending onε such that

P
(−�([0,1]) > κ1

)
> κ2.

By scaling,

P
(−�([ε2,1− ε2]) > κ1/2

)
> κ2.

If we chooseε small enough, by the fact that the paths ofXt are right continuous
with left limits,

P

(
sup

ε2≤s≤1−ε2
|Xs − Xε2| > M/2

)
≤ κ2/2.

Therefore, if

E1 =
{
−�([ε2,1− ε2]) > κ1/2, sup

ε2≤s≤1−ε2
|Xs − Xε2| ≤ M/2

}
,

then

P(E1) ≥ κ2/2.

Let B(x, r) denote the open ball inRd of radius r centered atx. Let Sk =
B((Mk,0), ε2), that is, the ball with center at the point(Mk,0) and radiusε,
and letQk be the square which has one diagonal going from(Mk − 4ε,0) to
(M(k + 1) + 4ε,0). Let zk be the center ofQk , that is,zk = (M(k + 1

2),0). Let

E2 = {Xε2 ∈ B(zk,1) andXs ∈ Qk for s ∈ [0, ε2]}.
Let

E3 = {Xε2 ∈ Sk+1 andXs ∈ Qk for s ∈ [0, ε2]}.
As usual, we useP x for the probability when our processX is started atx.

LEMMA 3. (a)There exists c3 such that if x ∈ Sk and ε is sufficiently small,
then

P x(E2) ≥ c3ε
4+β.
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(b) If x ∈ B(zk,M/2) and ε is sufficiently small, then

P x(E3) ≥ c3ε
6+β.

PROOF. (a) Let τ = inf{t : |Xt − X0| > ε/2}. By scaling and the fact that
β > 1, we haveP(sups≤ε2 |Xs − X0| > ε/2) → 0 asε → 0. So by takingε small
enough, we may assume that

P x(τ ≤ ε2) ≤ 1/2

for all x.
By the Lévy system formula for right continuous stable processes (see [4],

Proposition 2.3, e.g.),

P x(
Xτ∧ε2 ∈ B(zk,1/2)

)
≥ Ex

∑
s≤τ∧ε2

1(Xs−∈B((Mk,0),ε/2))1(Xs∈B(zk,1/2))

= Ex
∫ τ∧ε2

0

∫
B(zk,1/2)

n(Xs, z) dz ds,

(5.16)

wheren(y, z) = c4|y − z|−2−β . Sincen(y, z) is bounded below byc4M
−2−β if

y ∈ B((Mk,0),2ε) andz ∈ B(zk,1/2), we see

P x(
Xτ∧ε2 ∈ B(zk,1/2)

)
≥ c4ε

2+βEx[τ ∧ ε2] ≥ c4ε
2+βEx[ε2; τ > ε2]

= c4ε
2+βε2P x(τ > ε2) ≥ c3ε

4+β/2.

(5.17)

We noted in the first paragraph of the proof that there is probability at least 1/2
thatXt moves no more thanε/2 in timeε2. So by using the strong Markov property
at timeτ , there is probability at leastc4ε

4+β/4 thatXt exitsSk by timeε2, jumps to
B(zk,1/2), and then stays inB(zk,1) until timeτ + ε2. But this event is contained
in E2.

(b) The proof of (b) is similar. Using the Lévy system formula,

P x(
Xτ∧ε2 ∈ B

(
M

(
(k + 1),0

)
, ε/2

))
≥ Ex

∫ τ∧ε2

0

∫
B((M(k+1),0),ε/2)

n(Xs, z) dz ds.

This, in turn, is greater than or equal to

c5ε
2M−2−βEx[τ ∧ ε2] ≥ c6ε

6+β.

We choseε so that the probability thatXt moves no more thanε/2 in time ε2 is
at least 1/2. Using the strong Markov property at timeτ , there is probability at
leastc6ε

6+β/2 that the process exitsB(x, ε/2) by time ε2, jumps toB((M(k +
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1),0), ε/2), and then moves no more thanε/2 in timeε2. This event is contained
in E3, and (b) follows. This completes the proof of Lemma 3.�

Let

E′
3 = E3 ◦ θ1−ε2 = {X1 ∈ Sk+1 andXs ∈ Qk for s ∈ [1− ε2,1]}.

Using Lemma 3 and the Markov property at timesε2 and 1− ε2,

P x(E1 ∩ E2 ∩ E′
3) ≥ c2

3ε
10+2βκ2/2.(5.18)

Let

E4 = {�[0, ε2] > κ1/16},
E5 = {�[1− ε2,1] > κ1/16},
E6 = {A([0, ε2]; [ε2,1]) > κ1/16},
E7 = {A([0,1− ε2]; [1− ε2,1]) > κ1/16}.

(5.19)

LEMMA 4. There exist c7, c8 and b not depending on ε such that

P(E4) + P(E5) + P(E6) + P(E7) ≤ c7e
−c8/ε

b

.

PROOF. The estimates forE4 and E5 follow from the scaling (1.10)
and (1.14). By (2.16),

P
(
A([0,1]; [1,1+ a]) > λ

) ≤ c9e
−c10λ

β/d/aβ/d−1/2
.(5.20)

This and scaling give us the desired estimates forE6 andE7. This completes the
proof of Lemma 4. �

Recall that theoccupation measure µX
T is defined as

µX
t (A) =

∫ t

0
1A(Xs) ds

for all Borel setsA ⊆ Rd . If ps(x) is the probability density function forXs and
u(x) = ∫ ∞

0 ps(x) ds is the 0-potential density forX, it is easily checked that

Ex({µX∞(A)}n) = n!
∫ n∏

j=1

u(xi − xi−1)1A(xi) dxi,(5.21)

wherex0 = x. Hence, if

cA = sup
x

∫
u(x − y)1A(y) dy,(5.22)
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we have that supx Ex({µX∞(A)}n) ≤ n!cn
A and, thus,

sup
x

Ex(
exp{µX∞(A)/2cA}) ≤ 2

so that, by Chebyshev,

sup
x

P x(
µX∞(A) ≥ 2λcA

) ≤ 2e−λ.(5.23)

LEMMA 5. Let δ ∈ (0,2β − 2) and M > 2. There exist constants c11 and c12
depending only on M and δ such that

P

(
sup

|x|≤M,0<r≤1

µX∞(B(x, r))

rβ−δ
> λ

)
≤ c11M

2e−c12λ.(5.24)

PROOF. First fix x andr . Sinceu(y − z) ≤ c13|y − z|β−2, using symmetry,
cB(x,r) is bounded by ∫

B(x,r)
c13|x − z|β−2 dz = c14r

β.

Applying (5.23),

P
(
µX∞(B(x, r)) > λrβ−δ) ≤ 2e−c15λr−δ

.(5.25)

Suppose now thatµX∞(B(x, r)) > λrβ−δ for some|x| ≤ M and somer ∈ (0,1).
Choosek such that 2−k−1 ≤ r < 2−k and choosex′ so that both coordinates ofx′
are integer multiples of 2−k and|x − x′| ≤ 2−k+1. Therefore,

µX∞
(
B(x′,2−k+3)

)
> c16λ(2−k+3)β−δ,

wherec16 does not depend onk.
Since there are at mostc17M

222k points inB(0,2M) such that both coordinates
are integer multiples of 2−k , then if 2−k−1 ≤ r < 2−k ,

P

(
sup

|x|≤M

µX∞(B(x, r))

rβ−δ
> c16λ

)
≤ c182

2kM2e−c18λ2−δk

.(5.26)

Summing the right-hand side of (5.26) overk from −4 to∞ yields the right-hand
side of (5.24). This completes the proof of Lemma 5.�

By Lemma 5, it follows that

P

(
sup

|x|≤M,0<r≤1

µX∞(B(x, r))

rβ−δ
> κ1 log2(1/ε)/8

)
≤ c2

3ε
10+2βκ2/4(5.27)

if ε is small enough.
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Let µX
t,t ′(A) = ∫ t ′

t 1A(Xs) ds, set

Dk =
{
Xk ∈ Sk,Xk+1 ∈ Sk+1, and fork ≤ s ≤ k + 1,Xs ∈ Qk,

−�[0,1] ≥ κ1/4, sup
|x|≤M,0<r≤1

µX
k,k+1(B(x, r))

rβ−δ
≤ κ1 log2(1/ε)/8

}
,

and recall that

Fk = σ(Xv;v ≤ k).

By (5.18), Lemma 4, (5.27) and the Markov property,

P(Dk|Fk) ≥ c19ε
10+2βκ2/4 onDk−1.(5.28)

Let

Fk = {A([k − 1, k]; [k, k + 1]) ≤ κ1/8}, F0 = �,

and

Lk = Dk ∩ Fk.

LEMMA 6. Let δ ∈ (0,2β − 2). We have

P(F c
k ∩ Dk|Fk) ≤ c20e

−c21/ε
2β−2−δ

on
k−1⋂
j=1

Lj .(5.29)

PROOF. Whenk = 0, there is nothing to prove, so let us supposek ≥ 1. As
before,A([k − 1, k]; [k, k + 1]) has the distribution ofα1, and using the properties
of Dk−1,Dk and the Markov property, we have, recalling (2.1),

P(F c
k ∩ Dk|Fk)

≤ sup
x∈Sk,X

′∈D′
k

P x
X

(
lim
ρ→0

∫ 1

0

∫ 1

0
fρ(Xs − X′

r )1Qk
(Xs) dr ds ≥ κ1/8

)
,

(5.30)

whereP x
X denotes probability with respect to the processX, while the independent

processX′ is fixed, and

D′
k =

{
µX′

1 (·) is supported onQk−1,

sup
|x|≤M,0<r≤1

µX′
1 (B(x, r))

rβ−δ
≤ κ1 log2(1/ε)/8

}
.
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In (5.30) we can and will takef to be supported inB(0,1). To bound the
probability in (5.30), we note that

lim
ρ→0

∫ 1

0

∫ 1

0
fρ(Xs − X′

r )1Qk
(Xs) dr ds

≤ lim inf
ρ→0

∫ ∞
0

∫ 1

0
fρ(Xs − X′

r )1Qk
(Xs) dr ds

and, by Fatou,

Ex
X

({
lim inf
ρ→0

∫ ∞
0

∫ 1

0
fρ(Xs − X′

r )1Qk
(Xs) dr ds

}n)

≤ n! lim inf
ρ→0

∫
[0,1]nd

∫
Rnd

n∏
j=1

u(xi − xi−1)fρ

(
xi − X′

ri

)
1Qk

(xi) dxi dri

= n! lim inf
ρ→0

∫
Rnd

n∏
j=1

u(xi − xi−1)1Qk
(xi) dµX′

1,ρ(xi),

(5.31)

with x0 = x anddµX′
1,ρ(x) = ∫ 1

0 fρ(x −X′
r ) dr dx. As in the proof of (5.23), it then

follows thatP(F c
k ∩ Dk|Fk) ≤ c22e

−c23/c̄, where

c̄ = sup
0<ρ<ε

sup
x∈Qk−1∩Qk,X

′∈D′
k

∫
Rd

u(y − x)1Qk
(y) dµX′

1,ρ(y).(5.32)

It is easily checked that ifX′ ∈ D′
k , then uniformly inρ < ε and 0< r ≤ 1− ε,

sup
|x|≤M−ε

µX′
1,ρ(B(x, r)) ≤ crβ−δ log2(1/ε)(5.33)

andµX′
1,ρ is supported onQk−1,ε = {z| infv∈Qk−1 |z−v| ≤ ε}. SinceQk−1,ε ∩Qk ⊂

B((Mk,0),16ε), if we choosek0 so that 32ε ≥ 2−k0 ≥ 16ε, we have that the right-
hand side of (5.32) is bounded by

∞∑
k=k0

∫
B(x,2−k)\B(x,2−k−1)

u(y − x)dµX′
1,ρ(y)

≤ c24

∞∑
k=k0

(2−k)β−2µX′
1,ρ

(
B(x,2−k)

)

≤ c25

∞∑
k=k0

2−k(β−2)(2−k)β−δ

= c25

∞∑
k=k0

2−k(2β−2−δ) ≤ c26ε
2β−2−δ.

(5.34)
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This completes the proof of Lemma 6.�

If ε is small enough, we thus conclude from (5.28) and (5.29) that

P(Lk|Fk) ≥ c27ε
10+2βκ2/8 on

k−1⋂
j=1

Lj .(5.35)

Takeε sufficiently small, but now fix it, and letκ3 = c27ε
4+βκ2/8. We have

P

(
k⋂

j=1

Lj

)
= E

[
P(Lk|Fk);

k−1⋂
j=1

Lj

]
≥ κ3P

(
k−1⋂
j=1

Lj

)
.

By induction,

P

(
n⋂

j=1

Lj

)
≥ κn

3 .

On the eventMn = ⋂n
j=1 Lj , we have thatXs ∈ Qk if k ≤ s ≤ k + 1, and so there

are no intersections betweenX(Ii) andX(Ij ) if |i − j | > 1, whereIi = [i, i + 1].
Furthermore, onMn, we have

n∑
k=0

−�(Ik) ≥ κ1n/4,

while
n∑

k=0

A(Ik; Ik+1) ≤ κ1n/8.

Since

−�([0, n]) ≥
n∑

k=0

−�(Ik) −
n∑

k=0

A(Ik; Ik+1) ≥ κ1n/8

on the eventMn andP(Mn) ≥ κn
3 , Theorem 8 is proved.�

6. The lower tail; β = d . In this section we prove Theorem 2 in the
critical cases whereβ = d. This includes planar Brownian motion and the one-
dimensional symmetric Cauchy process.

By the last two lines of Theorem 6, we have

E(α(s, t)) = p1(0){(s + t) log(s + t) − s logs − t logt}.(6.1)

Write

ηt = −γt − p1(0)t logt.(6.2)
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We have thatη0 = 0 and, as in the proof of (5.3), for anys, t > 0, ηs+t ≤ ηs + ηs,t ,
whereηs,t = −γ ({(u, v)|s ≤ u ≤ v ≤ s + t}) − p1(0)t log t . For each fixeds > 0,

{ηs,v;v ≥ 0} is independent of{ηu;u ≤ s} andηs,t
d= ηt . So by the argument used

to obtain (5.9) and (5.10), we obtain

E

(
exp

{
c sup

t≤1
ηt

})
< ∞ ∀ c > 0,(6.3)

and

E

(
exp

{
1

p1(0)
ηs+t

})
≤ E

(
exp

{
1

p1(0)
ηs

})
E

(
exp

{
1

p1(0)
ηt

})
∀ s, t ≥ 0.

(6.4)

Therefore, there is a constant−∞ ≤ A < ∞ such that

lim
t→∞ t−1 logE

(
exp

{
1

p1(0)
ηt

})
= A(6.5)

or, equivalently,

lim
t→∞ t−1 log

(
t−tE

(
exp

{
− 1

p1(0)
γt

}))
= A.(6.6)

Taket = n to be an integer. By scaling and Stirling’s formula,

lim
n→∞

1

n
log

(
(n!)−1E

(
exp

{
− n

p1(0)
γ1

}))
= A + 1.(6.7)

By [12], Lemma 2.3,

lim
t→∞ t−1 logP

(
exp

{
− 1

p1(0)
γ1

}
≥ t

)
= −e−A−1 ≡ −bψ(6.8)

or, equivalently,

lim
t→∞ t−1 logP

(−γ1 ≥ p1(0) log t
) = −L,(6.9)

which proves (1.9). It remains to show thatbψ < ∞. That bψ < ∞ for the
β = d = 2 case was shown in [2], Section 5. A very similar proof takes care of
the β = d = 1 case. Note that the proof in [2] does not rely on the continuity of
Brownian paths. Instead of thet1/2 scaling there, we now havet1 scaling. Instead
of 1/(2π), we now havep1(0), which in theβ = d = 1 case is equal to 1/π . This
completes the proof of Theorem 2.�
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7. The lim sup result.

PROOF OFTHEOREM 3. We begin with a lemma.

LEMMA 7. If a < aψ , there exists C < ∞ such that

P

(
sup
t≤1

γt ≥ ud/β

)
≤ Ce−au, u > 0.(7.1)

PROOF. It follows from (4.8) and scaling that

sup
t≤1

P(γt ≥ ud/β) ≤ Ce−au, u > 0.(7.2)

Let �([s, t]) := γ ({(u, v)|s ≤ u ≤ v ≤ t}). For anys < t ,

γt − γs = γ ([0, s; s, t]) + �([s, t]),(7.3)

with γ ([0, s; s, t]) d= {αs,t−s}0 and�([s, t]) d= γt−s .
Using (7.3), it then follows from (2.16) and (3.21) that for someθ > 0,

sup
s<t≤1

E

(
exp

{
θ

∣∣∣∣ γt − γs

(t − s)1−d/2β

∣∣∣∣β/d})
< ∞,(7.4)

hence, by Chebyshev, that for somec > 0,

P(|γt − γs | ≥ ud/β) ≤ Ce−cu/(t−s)ζ , u > 0,(7.5)

uniformly in 0 ≤ s < t ≤ 1, whereζ = β/d − 1/2 > 0. Lemma 7 then follows
from the chaining argument used in the proof of Proposition 4.1 of [2].�

It is now straightforward to use scaling and Borel–Cantelli to get the following:

LEMMA 8.

lim sup
t→∞

γt

t(2−d/β)(log logt)d/β
≤ a

−d/β
ψ a.s.(7.6)

PROOF. Let M > 1/aψ . Chooseε > 0 small andq > 1 close to 1 so that
M(aψ − 2ε)/q2ζ > 1. Let tn = qn and let

Cn =
{

sup
s≤tn

γs > t
(2−d/β)
n−1 (M log logtn−1)

d/β

}
.(7.7)

By Lemma 7 and scaling, the probability ofCn is bounded by

c1e
−(aψ−ε)M(tn−1/tn)2ζ log logtn−1.

By our choices ofε andq, this is summable, so by Borel–Cantelli the probability
thatCn happens infinitely often is zero. To complete the proof, we point out that
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if γt > t(2−d/β)(M log logt)d/β for somet ∈ [tn−1, tn], then the eventCn occurs.
This completes the proof of Lemma 8.�

To finish the proof of Theorem 3 we prove the following:

LEMMA 9.

lim sup
t→∞

γt

t(2−d/β)(log logt)d/β
≥ a

−d/β
ψ a.s.(7.8)

PROOF. Let a > aψ and leta′ be the midpoint of(aψ, a). Then by (4.8),

P
(
γ1 ≥ (u log logt)d/β) ≥ c2e

−a′u log logt , u > 0.(7.9)

Let δ > 0 be small enough so that(1 + δ)a′/a < 1 and settn = en1+δ
. Recall that

�([s, t]) d= γt−s . Using (7.9) and scaling, it is straightforward to obtain

∞∑
n=1

P

(
�([tn−1, tn]) > t(2−d/β)

n

(
log logtn

a

)d/β)
= ∞.

Using the fact that different pieces of the path of a stable process are independent
and Borel–Cantelli,

lim sup
n→∞

�([tn−1, tn])
t
(2−d/β)
n (log logtn)d/β

>
1

ad/β
a.s.(7.10)

Let ε > 0. From (3.21), scaling and Borel–Cantelli, it follows that

|�([0, tn−1])| =
∣∣γtn−1

∣∣ = O
(
εt(2−d/β)

n (log logtn)
d/β)

a.s.(7.11)

Since

γtn = �([0, tn])
= �([tn−1, tn]) + �([0, tn−1]) + γ ([0, tn−1]; [tn−1, tn])

(7.12)

andγ ([0, s]; [s, t]) d= {αs,t−s}0 with αs,t−s ≥ 0, we have our result from (7.10),
(7.11), (7.12) and the fact, from Theorem 6, that

Eαtn−1,tn−tn−1 ≤ Eαtn = c6t
(2−d/β)
n = o

(
t (2−d/β)
n (log logtn)

d/β)
.

This completes the proof of Lemma 9.�

Lemmas 8 and 9 together imply Theorem 3.�
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8. The lim inf result.

PROOF OF THEOREM 4. We consider first the case whenβ < d. Let
Dt = −γt . We begin with a lemma.

LEMMA 10. If b < bψ , there exists C < ∞ such that

P

(
sup
t≤1

Dt ≥ ud/β−1
)

≤ Ce−bu, u > 0.(8.1)

PROOF. It follows from (1.8) and scaling (1.10) that

lim
u→∞u−1 logP(D1 ≥ ud/β−1) = −bψ.(8.2)

Scaling once more shows that, for anyt > 0,

P(Dt ≥ ud/β−1) ≤ Ce−bu/tη , u > 0,(8.3)

with η = (2− d/β)/(d/β − 1) > 0. For anys < t ,

Dt − Ds = −γ ([0, s; s, t]) − �([s, t])
≤ E(αs,t−s) − �([s, t])
≤ cψ(t − s)2−2/β − �([s, t]),

(8.4)

with −�([s, t]) := Dt−s and we have used Theorem 6

E(αs,t−s) = cψ [s2−2/β + (t − s)2−2/β − t2−2/β ] ≤ cψ(t − s)2−2/β.(8.5)

Lemma 10 then follows from the chaining argument used in the proof of
Proposition 4.1 of [2]. �

It is now straightforward to use scaling and Borel–Cantelli to get the following:

LEMMA 11.

lim sup
t→∞

Dt

t(2−d/β)(log logt)d/β−1 ≤ b
−(d/β−1)
ψ a.s.(8.6)

PROOF. Let M > 1/bψ . Chooseε > 0 small andq > 1 close to 1 so that
M(bψ − 2ε)/qρ > 1. Let tn = qn and let

Cn =
{

sup
s≤tn

Ds > t
(2−d/β)
n−1 (M log logtn−1)

d/β−1
}
.(8.7)

By Lemma 7 and scaling, the probability ofCn is bounded by

c1e
−(bψ−ε)M(tn−1/tn)ρ log logtn−1.
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By our choices ofε andq, this is summable, so by Borel–Cantelli the probability
thatCn happens infinitely often is zero. To complete the proof, we point out that if
Dt > t(2−d/β)(M log logt)d/β−1 for somet ∈ [tn−1, tn], then the eventCn occurs.
This completes the proof of Lemma 11.�

To finish the proof of Theorem 4 whenβ < d, we prove the next lemma.

LEMMA 12.

lim sup
t→∞

Dt

t(2−d/β)(log logt)d/β−1 ≥ b
−(d/β−1)
ψ a.s.(8.8)

PROOF. Let b > bψ and letb′ be the midpoint of(bψ, b). Then by (8.2),

P
(
D1 ≥ (u log logt)d/β−1) ≥ c2e

−b′u log logt , u > 0.(8.9)

Let δ > 0 be small enough so that(1 + δ)b′/b < 1 and settn = en1+δ
. Recall that

�([s, t]) d= γt−s . Using (8.9) and scaling, it is straightforward to obtain
∞∑

n=1

P

(
−�([tn−1, tn]) > t(2−d/β)

n

(
log logtn

b

)d/β−1)
= ∞.

Using the fact that different pieces of the path of a stable process are independent
and Borel–Cantelli,

lim sup
n→∞

−�([tn−1, tn])
t
(2−d/β)
n (log logtn)d/β−1

>
1

bd/β−1 a.s.(8.10)

Let ε > 0. From (3.21), scaling and Borel–Cantelli, it follows that

|�([0, tn−1])| = |γtn−1| = O
(
εt(2−d/β)

n (log logtn)
d/β−1) a.s.(8.11)

Note that

Dtn = −�([0, tn])
= −�([tn−1, tn]) − �([0, tn−1]) − γ ([0, tn−1]; [tn−1, tn])

(8.12)

andγ ([0, s]; [s, t]) d= {αs,t−s}0. Using (2.16),

P
(
α([0, tn−1]; [tn−1, tn]) > t(2−d/β)

n

)
≤ P

(
α([0, tn−1]; [tn−1, tn])

(tn−1(tn − tn−1))(1−d/2β)
> (tn/tn−1)

(1−d/2β)

)
≤ e−(tn/tn−1)

(β/d−1/2)

,

(8.13)

which is summable. Using Borel–Cantelli, we have

α([0, tn−1]; [tn−1, tn]) = o
(
t (2−d/β)
n (log logtn)

d/β−1).(8.14)
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Substituting this, (8.10) and (8.11) in (8.12) completes the proof of Lemma 12.
�

Lemmas 11 and 12 together imply Theorem 4 whenβ < d. The case ofβ = d

follows from (6.9) and the proof of [2], Theorem 1.5.�

Acknowledgment. We thank Evarist Giné for supplying the elegant proof of
Lemma 1.
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