
Derivatives of self-intersection local times

Jay Rosen?

Department of Mathematics
College of Staten Island, CUNY
Staten Island, NY 10314
e-mail: jrosen3@earthlink.net

Summary. We show that the renormalized self-intersection local time γt(x) for
both the Brownian motion and symmetric stable process in R1 is differentiable in
the spatial variable and that γ′

t(0) can be characterized as the continuous process
of zero quadratic variation in the decomposition of a natural Dirichlet process. This
Dirichlet process is the potential of a random Schwartz distribution. Analogous
results for fractional derivatives of self-intersection local times in R1 and R2 are also
discussed.

1 Introduction

In their study of the intrinsic Brownian local time sheet and stochastic area
integrals for Brownian motion, [14, 15, 16], Rogers and Walsh were led to
analyze the functional

A(t, Bt) =
∫ t

0

1[0,∞)(Bt −Bs) ds (1)

where Bt is a 1-dimensional Brownian motion. They showed that A(t, Bt) is
not a semimartingale, and in fact showed that

A(t, Bt)−
∫ t

0

LBs
s dBs (2)

has finite non-zero 4/3-variation. Here Lx
s is the local time at x, which is

formally Lx
s =

∫ s

0
δ(Br − x) dr, where δ(x) is Dirac’s ‘δ-function’. A formal

application of Ito’s lemma, using d
dx1[0,∞)(x) = δ(x) and d2

dx2 1[0,∞)(x) = δ′(x),
yields

A(t, Bt)−
∫ t

0

LBs
s dBs = t +

1
2

∫ t

0

∫ s

0

δ′(Bs −Br) dr ds (3)
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which motivates the subject matter of this paper. We study the process which
is formally defined as

γ′t = −
∫ t

0

∫ s

0

δ′(Xs −Xr) dr ds (4)

where δ′ is the derivative of the delta-function, and Xt is Brownian motion
or, more generally, a symmetric stable process in R1. The process γ′t is related
to the self-intersection local time process which is formally defined as

αt =
∫ t

0

∫ s

0

δ(Xs −Xr) dr ds. (5)

If we set

αt(y) =
∫ t

0

∫ s

0

δ(Xs −Xr − y) dr ds (6)

we obtain a ‘near intersection’ local time, and formally differentiating in y
suggests that (4) is the derivative d

dy αt(y)
∣∣
y=0

.
The process αt has not been studied much in one dimension since it can

be expressed in terms of the local time Ly
t of the process Xt: αt = 1

2

∫
(Ly

t )2 dy

and αt(y) =
∫∫ t

0
Lx−y

s dsL
x
s dx. The fact that Ly

t is not differentiable in the
spatial variable y indicates that the existence of (4) and its identification as
a derivative requires some care.

In two dimensions, even for Brownian motion, αt does not exist and must
be ‘renormalized’ by subtracting off a counterterm. This was first done by
Varadhan [22], and has been the subject of a large literature, see Dynkin
[4], Le Gall [12], Bass and Khoshnevisan [1], Rosen [20, 21]. The resulting
renormalized self-intersection local time turns out to be the right tool for the
solution of certain “classical” problems such as the asymptotic expansion of
the area of the Wiener and stable sausage in the plane and fluctuations of the
range of stable random walks. (See Le Gall [11, 10], Le Gall–Rosen [13] and
Rosen [19]).

The process γ′t in R1, in a certain sense, is even more singular than self-
intersection local time in R2, but as we shall see, due to the symmetry prop-
erties of δ′, there is no need for a counterterm. We begin with a precise def-
inition of γ′t, show that it exists, is the spatial derivative of the renormalized
self-intersection local time γt(x) = αt(x)− E

(
αt(x)

)
, and has zero quadratic

variation. We then show how it can be characterized as the continuous process
of zero quadratic variation in the decomposition of a natural Dirichlet process.
This Dirichlet process is the potential of a random Schwartz distribution.

Let

αt,ε(y) def=
∫ t

0

∫ s

0

fε(Xs −Xr − y) dr ds (7)

and

α′t,ε(y) def= −
∫ t

0

∫ s

0

f ′ε(Xs −Xr − y) dr ds (8)
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where fε is an approximate δ-function at zero, i.e. fε(x) = f(x/ε)/ε with f a
positive, C1, even function of x supported in the unit interval with

∫
f dx = 1.

We then define

αt(y) = lim
ε→0

αt,ε(y), α′t(y) = lim
ε→0

α′t,ε(y) (9)

γt(y) = lim
ε→0

(
αt,ε(y)− E

(
αt,ε(y)

))
(10)

and
γ′t(y) = lim

ε→0

(
α′t,ε(y)− E

(
α′t,ε(y)

))
(11)

whenever the limit exists. We set γ′t = γ′t(0). Let

hβ(x) =
{

c(β) sgn(x)|x|β−2 if x 6= 0
0 if x = 0 (12)

where c(β) = −π−1Γ (2−β) cos((1−β)π/2) if 1 < β < 2 and c(2) = −1. Note
that hβ(x) is not continuous at x = 0.

Theorem 1. Let Xt denote the symmetric stable process of order β > 3/2 in
R1. Then αt,ε(y) and α′t,ε(y) converge a.s. and in all Lp spaces as ε → 0 for
any (t, y) ∈ R+ ×R1.

The following hold almost surely:

1. For any continuous function g(y) we have∫ t

0

∫ s

0

g(Xs −Xr) dr ds =
∫

g(y)αt(y) dy. (13)

and if g ∈ C1∫ t

0

∫ s

0

g′(Xs −Xr) dr ds = −
∫

g(y)α′t(y) dy. (14)

2. α′t(y)− hβ(y)t is continuous in y.
3. {γt(y) , (t, y) ∈ R+ × R1} and {γ′t(y) , (t, y) ∈ R+ × R1} are continuous

and γt(y) is differentiable in y with γ′t(y) = d
dy γt(y).

4. α′t(0) = γ′t(0).

We see from (13) and (14) that α′t(y) is the distributional derivative of
αt(y). However, we see from 2. that α′t(y) is not continuous at y = 0 so that
these equations do not allow us to characterize α′t(0).

For any function gt and any sequence τ = {τn} of partitions τn = {0 =
t0 < tn,1 < · · · < tn,n = T} of [0, T ], with mesh size |τn| = maxi |tn,i − tn,i−1|
going to 0, we set

Vp(g; τ) = lim
n→∞

n∑
i=1

|gtn,i
− gtn,i−1 |p (15)
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whenever it exists.
In [16], Rogers and Walsh show that for Brownian motion V4/3(γ′; τ) is a

finite non-zero constant, independent of τ . Let β′ denote the usual conjugate
exponent to β, i.e. 1

β + 1
β′ = 1.

Theorem 2. Let X be a symmetric stable process of order β > 3/2 in R1.
Then Vp(γ′; τ) = 0 for any τ and any p > 2β′

3 .

Note that for Brownian motion this shows that Vp(γ′; τ) = 0 for any
p > 4/3. We conjecture that for the symmetric stable process of order β > 3/2
in R1 we have that V 2β′

3
(γ′; τ) is a finite non-zero constant, independent of τ .

We now obtain an intrinsic characterization for γ′t, which doesn’t involve
limits. The key idea is that γ′t has zero quadratic variation. In the case of
renormalized intersection local time γt for Brownian motion in the plane this
was observed by Bertoin, [2] and extended by us in [21].

Recall that a continuous adapted process Zt is said to have zero quadratic
variation, if for each T > 0 and any sequence of partitions τn = {0 = t0 <
t1 < · · · < tn = T} of [0, T ], with mesh size |τn| = maxi |ti − ti−1| going to 0

lim
n→∞

E

(∑
ti∈τn

(Zti
− Zti−1)

2

)
= 0. (16)

Föllmer [7] has coined the term “Dirichlet process” to refer to any process
which can be written as the sum of a martingale and a process of zero quadratic
variation. It is important to note that such a decomposition is unique. The
class of Dirichlet processes is much wider than the class of semimartingales.

We use Yt to denote our stable process Xt killed at an independent expo-
nential time λ. In the following theorem γ′t will be defined for the process Yt

in place of Xt.
Let us begin with a special case of the Doob–Meyer decomposition for

semimartingales. Let Lµ
t denotes the continuous additive functional of Xt

with Revuz measure µ. Using the additivity of Lµ
t and the Markov property

we have
Ex(Lµ

λ | Ft) = Lµ
t∧λ + U1µ(Yt) (17)

where Ft = σ(Ys , s ≤ t). Equivalently, U1µ(Yt) = Mt − Lµ
t∧λ where Mt =

Ex(Lµ
λ | Ft) is a martingale. This is the Doob-Meyer decomposition for the

potential U1µ(Yt). We will show that γ′t arises in a similar decomposition for
the potential of a random Schwartz distribution. This new potential will no
longer be a semimartingale but a Dirichlet process, and γ′t will correspond to
the process of zero quadratic variation in the decomposition of this Dirichlet
process.

Let Ft be the random additive distribution-valued process defined by

Ft(g) = − lim
ε→0

∫ t

0

∫
g(y + Yr)f ′ε(y) dy dr (18)
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whenever the limit exists. It follows by integration by parts that for all g ∈
C∞

0 (R1)

Ft(g) =
∫ t

0

g′(Yr) dr. (19)

With this definition it is natural to set

U1Ft(x) = − lim
ε→0

∫ t

0

∫
u1
(
x− (y + Yr)

)
f ′ε(y) dy dr (20)

whenever the limit exists.
Note that formally

U1Ft(x) = −
∫ t

0

du1

dx
(x− Ys) ds. (21)

We have the following analogue of the Doob–Meyer decomposition.

Theorem 3. Let Y be a symmetric stable process of order β > 3/2 in R1,
killed at an independent exponential time λ. Then γ′t is continuous a.s. with
zero quadratic variation and

U1Ft(Yt) = Mt − γ′t (22)

where Mt is the martingale Ex(γ′∞ | Ft).

In view of Theorem 3 we can characterize the renormalized intersec-
tion local time γ′t as the continuous process of zero quadratic variation
in the decomposition of the random potential U1Ft(Yt) which is formally
−
∫ t

0
du1

dx (Yt − Ys) ds.

1.1 Fractional derivatives

All our results can be extended to fractional derivatives. There are in fact sev-
eral natural candidates for the fractional derivative of order 0 < ρ < 1 in Rd:
g(ρ)(x) = (2π)−d

∫
eipxw(p)ĝ(p) dp with w(p) positively homogeneous of index

ρ, i.e. w(λp) = |λ|pw(p) for all λ > 0. Our results can be extended for any
such w(p), but for simplicity we work with symmetric fractional derivatives:
w(−p) = −w(p) which allows us to avoid introducing counterterms. In one
dimension this determines w(p) up to a constant factor: w(p) = sgn(p)|p|ρ.
Then we study

γ
(ρ)
t = −

∫ t

0

∫ s

0

δ(ρ)(Xs −Xr) dr ds. (23)

More precisely, let

α
(ρ)
t,ε (y) def= −

∫ t

0

∫ s

0

f (ρ)
ε (Xs −Xr − y) dr ds, (24)
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α
(ρ)
t (y) = lim

ε→0
α

(ρ)
t,ε (y) (25)

and
γ

(ρ)
t (y) = lim

ε→0

(
α

(ρ)
t,ε (y)− E

(
α

(ρ)
t,ε (y)

))
(26)

whenever the limit exists. We set γ
(ρ)
t = γ

(ρ)
t (0).

Theorem 4. Let Xt denote the symmetric stable process of order β > 1 ∨
(ρ + 1/2) in R1. Then α

(ρ)
t,ε (y) converges a.s. and in all Lp spaces as ε → 0

for any (t, y) ∈ R+ ×R1.
The following hold almost surely:

1. For any Cρ function g(x) we have∫ t

0

∫ s

0

g(ρ)(Xs −Xr) dr ds = −
∫

g(y)α(ρ)
t (y) dy. (27)

2. α
(ρ)
t (y)− hβ+1−ρ(y)t is continuous in y.

3. {γ(ρ)
t (y) , (t, y) ∈ R+×R1} is a.s. continuous and γ

(ρ)
t (y) is the derivative

of order ρ in y of γt(y).
4. α

(ρ)
t (0) = γ

(ρ)
t (0).

5. Vp(γ(ρ); τ) = 0 for any τ and any p > 2β
3β−1−2ρ .

Once again, we use Yt to denote our R1 valued Lévy process Xt killed at
an independent exponential time λ and in the following theorem γ

(ρ)
t will be

defined for the process Yt in place of Xt. Let now Φt be the random additive
distribution-valued process defined by

Φt(g) = − lim
ε→0

∫ t

0

∫
g(y + Yr)f (ρ)

ε (y) dy dr (28)

whenever the limit exists. It is easy to check that for all g ∈ C∞
0 (R1)

Φt(g) =
∫ t

0

g(ρ)(Yr) dr. (29)

With this definition it is natural to set

U1Φt(x) = − lim
ε→0

∫ t

0

∫
u1
(
x− (y + Yr)

)
f (ρ)

ε (y) dy dr (30)

whenever the limit exists.
Note that formally

U1Φt(x) = −
∫ t

0

(u1)(ρ)(x− Yr) dr. (31)

We have the following analogue of the Doob–Meyer decomposition.
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Theorem 5. Let Y be a symmetric stable process of order β > ρ + 1/2 in
R1, killed at an independent exponential time λ. Then γ

(ρ)
t is continuous a.s.

with zero quadratic variation and

U1Φt(Yt) = Mt − γ
(ρ)
t (32)

where Mt is the martingale Ex(γ(ρ)
λ | Ft).

We leave to the interested reader the task of formulating analogous results
for fractional derivatives of renormalized self-intersection local times in the
plane.

This paper is organized as follows. In section 2 we prove Theorem 1 and
in section 3 prove Theorem 2. Section 4 contains the short proof of Theorem
3. The proofs of Theorems 4 and 5 are similar and left to the reader.

Acknowledgement. I would like to thank J. Walsh for some very helpful
conversations.

2 Existence of α′
t(x)

Proof of Theorem 1. For any x ∈ R1 and bounded Borel set B ⊆ R2
+ let

α′ε(x,B) = −
∫

B

∫
f ′ε(Xs −Xr − x) dr ds. (33)

α′ε(x,B) is clearly continuous in all parameters as long as ε > 0. We use |B|
to denote the Lebesgue measure of B ⊆ R2

+. For any random variable Y we
set {Y }0 = Y − E(Y ).

The following Lemma will be proven at the end of this section.

Lemma 1. Let X be the symmetric stable process of index β > 3/2 in R1.
Then for some ζ > 0∣∣∣E({α′ε(x,B)− α′ε′(x

′, B)
}j

0

)∣∣∣ ≤ c0(ζ, j) |(ε, x)− (ε′, x′)|jζ (34)

and ∣∣E({α′ε(x,B)
}j

0

)∣∣ ≤ c0(ζ, j) |B|jζ (35)

for all j ∈ Z+, ε, ε′ ∈ (0, 1], x, x′ ∈ R1 and all Borel sets B ⊆ A1
1 =:

[0, 1/2]× [1/2, 1].

Let

An
k = [(2k − 2)2−n, (2k − 1)2−n]× [(2k − 1)2−n, (2k)2−n]. (36)

Using the scaling Xλt
L= λ1/βXt and f ′λε(x) = 1

λ2 f ′ε(x/λ) we have
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α′ε(x,B) L= 2−n(2−2/β)α′2n/βε(2
n/βx, 2nB) (37)

so that from (34) and (35) we have that for all Borel sets B ⊆ An+1
k∣∣E({α′ε(x,B)−α′ε′(x

′, B)}j
0

)∣∣ ≤ c0(ζ, j)2−nj(2−2/β−ζ/β) |(ε, x)−(ε′, x′)|ζj (38)

and ∣∣E({α′ε(x,B)}j
0

)∣∣ ≤ c0(ζ, j)2−nj(2−2/β−2ζ) |B|ζj . (39)

For any B let
γ′ε(x,B) = {α′ε(x, B)}0. (40)

Following Le Gall [12] we write

γ′ε(x, B) =
∑
n,k

γ′ε(x, B ∩An
k ) (41)

for any B ⊆ {0 ≤ r ≤ s ≤ 1}. Using (38) and (39) together with independence
we then have, (see Prop. 3.5.2 of [8]),∣∣∣∣∣E

({ 2n∑
k=1

γ′ε(x,B ∩An+1
k )− γ′ε′(x

′, B ∩An+1
k )

}j
)∣∣∣∣∣ (42)

≤ c0(ζ, j)2nj/22−nj(2−2/β−ζ/β) |(ε, x)− (ε′, x′)|ζj ,

and∣∣∣∣∣E
({ 2n∑

k=1

γ′ε(x,B ∩An+1
k )

}j
)∣∣∣∣∣ ≤ c0(ζ, j)2nj/22−nj(2−2/β−2ζ) |B|ζj (43)

so that
‖γ′ε(x, B)− γ′ε′(x

′, B)‖j ≤ c |(ε, x)− (ε′, x′)|ζ (44)

and
‖γ′ε(x,B)‖j ≤ c |B|ζ (45)

if we choose ζ > 0 so that 1/2− 2 + 2/β + ζ(2 + 1/β) < 0. This is possible for
β > 4/3 (and we are assuming that β > 3/2).

Let Bt = {0 ≤ r ≤ s ≤ t} and set γ′ε,t(x) =: γ′ε(x,Bt). If t, t′ ≤ M < ∞
then |Bt −Bt′ | ≤ M |t− t′| so that by (45) for some c < ∞

‖γ′ε,t(x)− γ′ε,t′(x)‖j ≤ c |t− t′|ζ (46)

and combined with (44) this shows that for some ζ > 0

‖γ′ε,t(x)− γ′ε′,t′(x
′)‖j ≤ c |(ε, x, t)− (ε′, x′, t′)|ζ . (47)

Kolmogorov’s lemma then shows that locally
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|γ′ε,t(x)− γ′ε′,t′(x
′)| ≤ cω |(ε, x, t)− (ε′, x′, t′)|ζ

′
, ε, ε′ > 0 (48)

for some ζ ′ > 0, which assures us of a locally uniform and hence continuous
limit

γ′t(x) = lim
ε→0

γ′ε,t(x). (49)

The next Lemma is proven in section 5.

Lemma 2. For the symmetric stable process of index β > 1 we can find a
continuous function h(x) with h(0) = 0 such that for each x

lim
ε→0

E
(
α′ε,t(x)

)
− h(x) =

{
c(β) sgn(x)|x|β−2t if x 6= 0
0 if x = 0 (50)

where c(β) = −2Γ (2 − β) cos((1 − β)π/2) if 1 < β < 2 and c(2) = −1.
Furthermore, (50) converges locally uniformly in x away from 0 and locally
in L1.

Using this Lemma and the locally uniform convergence (49) we see that

α′t(x) = lim
ε→0

α′ε,t(x) (51)

exists for all x, t, and α′t(0) = γ′t(0). Furthermore the convergence is locally
uniform in x away from 0 and locally in L1.

A similar and simpler analysis shows that locally

|γε,t(x)− γε′,t′(x′)| ≤ cω |(ε, x, t)− (ε′, x′, t′)|ζ
′
, ε, ε′ > 0 (52)

for some ζ ′ > 0, which assures us of a locally uniform and hence continuous
limit

γt(x) = lim
ε→0

γε,t(x). (53)

Using the bound ps(y) ≤ c/s1/β we can check that
∫ t

0

∫ s

0
ps−r(y) dr ds is

bounded and continuous in y and that uniformly in x

lim
ε→0

E
(
αε,t(x)

)
= lim

ε→0

∫ t

0

∫ s

0

(∫
fε(y − x)ps−r(y) dy

)
dr ds (54)

= lim
ε→0

∫
fε(y − x)

(∫ t

0

∫ s

0

ps−r(y) dr ds

)
dy

=
∫ t

0

∫ s

0

ps−r(x) dr ds

Together with the locally uniform convergence of (53) we see that

αt(x) = lim
ε→0

αε,t(x). (55)

locally uniformly.
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Now let g(x) be a C1 function with compact support. The locally L1

convergence in (51) and the fact that {Xs ; 0 ≤ s ≤ t} is bounded a.s. shows
that ∫

g(x)α′t(x) dx = lim
ε→0

∫
g(x)α′ε,t(x) dx (56)

= − lim
ε→0

∫
g(x)

(∫ t

0

∫ s

0

f ′ε(Xs −Xr − x) dr ds

)
dx

= − lim
ε→0

∫ t

0

∫ s

0

(∫
g′(x)fε(Xs −Xr − x) dx

)
dr ds

= − lim
ε→0

∫ t

0

∫ s

0

fε ∗ g′(Xs −Xr) dr ds

= −
∫ t

0

∫ s

0

g′(Xs −Xr) dr ds.

Since the path {Xs ; 0 ≤ s ≤ t} is bounded a.s. we have that α′t(x) has
compact support a.s. so that (56) holds for all C1 functions g(x).

Similarly, using the locally uniform convergence (55) we see that for any
continuous function h(x) we have∫

h(x)αt(x) dx =
∫ t

0

∫ s

0

h(Xs −Xr) dr ds. (57)

Therefore ∫
g(x)α′t(x) dx = −

∫
g′(x)αt(x) dx (58)

holds for all C1 functions g(x).
It is clear that d

dxγε,t(x) = γ′ε,t(x) for any ε > 0 and hence

γε,t(x) = γε,t(y) +
∫ x

y

γ′ε,t(z) dz. (59)

The locally uniform convergence shown above then implies that

γt(x) = γt(y) +
∫ x

y

γ′t(z) dz (60)

and therefore d
dxγt(x) = γ′t(x). This completes the proof of Theorem 1.

Proof of Lemma 1. We begin by showing how to find a bound∣∣∣E((α′ε(x, B)
)j)∣∣∣ ≤ cj (61)

uniform in ε ∈ (0, 1] , x ∈ R1 and B ⊆ A1
1.

We use
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f ′ε(x) =
i

2π

∫
eipxpf̂(εp) dp (62)

and independence to write that

E
((

α′ε(x,B)
)j) (63)

=
1

(2πi)j

∫ ∫
Bj

exp
(
−ix

j∑
k=1

pk

)
E

(
exp
( j∑

k=1

ipk(Xsk
−Xrk

)
))

j∏
k=1

pkf̂(εpk) dsk drk dpk

=
1

(2πi)j

∫ ∫
Bj

exp
(
−ix

j∑
k=1

pk

)
E

(
exp
( j∑

k=1

ipk(X1/2 −Xrk
)
))

E

(
exp
( j∑

k=1

ipk(Xsk
−X1/2)

)) j∏
k=1

pkf̂(εpk) dsk drk dpk.

We write
j∑

k=1

pk(X1/2 −Xrk
) =

j∑
k=1

vk(Xtk+1 −Xtk
) (64)

where the t1, . . . , tj are the ri’s relabeled so that t1 ≤ t2 ≤ · · · ≤ tj ≤ tj+1
def=

1/2 and vi =
∑

l:rl≤ti
pl so that the vi’s span Rj . Similarly we rewrite

j∑
k=1

pk(Xsk
−X1/2) =

j∑
k=1

v′k(Xt′
k
−Xt′

k−1
) (65)

with t′0
def= 1/2. Then using (63) and independence we have

E
((

α′ε(x, B)
)j) (66)

=
1

(2πi)j

∫ ∫
Bj

exp
(
−ix

j∑
k=1

pk

)
exp
(
−

j∑
k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑
k=1

|v′k|β(tk − tk−1)
) j∏

k=1

pkf̂(εpk) dsk drk dpk.

Using this and the simple bound∫ 1

0

e−t|v|β dt ≤ c

1 + |v|β
(67)

we have the uniform bound
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∣∣∣E((α′ε(x,B)
)j)∣∣∣ ≤ cj

∫ ∏ 1
1 + |vk|β

∏ 1
1 + |v′k|β

j∏
k=1

|pk|dpk (68)

≤ cj

∥∥∥∥∏ |pk|1/2

1 + |vk|β

∥∥∥∥
2

∥∥∥∥∏ |pk|1/2

1 + |v′k|β

∥∥∥∥
2

.

Since vi =
∑

l:rl≤ti
pl, we see that each pk can be represented as the difference

pk = vi−vi−1 for some i, and each vi appears in the representation of at most
two pk’s. Thus ∥∥∥∥∏ |pk|1/2

1 + |vk|β

∥∥∥∥2

2

=
∫ ∏ |pk|

1 + |vk|2β
dpk (69)

≤ cj

∫ ∏ 1 + |vk|+ |vk|2

1 + |vk|2β
dvk

which is bounded if β > 3/2.
We can now establish (34). To handle the variation in x we replace (66)

by

E
((

α′ε(x, B)− α′ε(x
′, B)

)j) (70)

=
1

(2πi)j

∫ ∫
Bj

( j∏
k=1

{exp(−ipkx)− exp(−ipkx′)}

)

exp
(
−

j∑
k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑
k=1

|v′k|β(tk − tk−1)
)

j∏
k=1

pkf̂(εpk) dsk drk dpk

and use the bound

| exp(−ipkx)− exp(−ipkx′)| ≤ C|pk|ζ |x− x′|ζ (71)

for any 0 ≤ ζ ≤ 1.
Similarly to handle the variation in ε we replace (66) by

E
((

α′ε(x, B)− α′ε′(x,B)
)j) (72)

=
1

(2πi)j

∫ ∫
Bj

exp
(
−ix

j∑
k=1

pk

)
exp
(
−

j∑
k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑
k=1

|v′k|β(tk − tk−1)
) j∏

k=1

pk

(
f̂(εpk)− f̂(ε′pk)

)
dsk drk dpk

and use the bound
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∣∣ ≤ C|pk|ζ |ε− ε′|ζ (73)

for any 0 ≤ ζ ≤ 1. Since (70)-(72) hold also when j = 1, we obtain (34).
To prove (35) we first apply Holder’s inequality to (66):

E
((

α′ε(x, B)
)j) (74)

=
1

(2πi)j

∫ ∫
Bj

exp
(
−ix

j∑
k=1

pk

)
exp
(
−

j∑
k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑
k=1

|v′k|β(tk − tk−1)
) j∏

k=1

pkf̂(εpk) dsk drk dpk

≤ cj |B|j/a

∫ (∫
Bj

exp
(
−a′

j∑
k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−a′

j∑
k=1

|v′k|β(tk − tk−1)
) j∏

k=1

dsk drk

)1/a′ j∏
k=1

|pk|dpk

for any 1/a + 1/a′ = 1. The last integral can be bounded as before if a′ is
chosen close to 1. As in the proof of (34), this completes the proof of (35) and
therefore of Lemma 1.

3 p-variation of γ′
t

Proof of Theorem 2. Since we know that α′t,ε → γ′t in L2, we have

E
(
(γ′t − γ′t′)

2
)

(75)

= lim
ε→0

E
(
(α′t,ε − α′t′,ε)

2
)

= lim
ε→0

E

((∫ t

t′

∫ s

0

f ′ε(Xs −Xr) dr ds

)2)

= lim
ε→0

∫ ∫{
0≤s1≤s2≤s3≤s4
t′≤s3≤t ; t′≤s4≤t

}E
(
exp
(
−ip(Xs2 −Xs1)− i(p + q)(Xs3 −Xs2)

)
exp
(
−iq(Xs4 −Xs3)

)) 4∏
k=1

dsk pqf̂(εp)f̂(εq) dp dq

+ lim
ε→0

∫ ∫{
0≤s1≤s2≤s3≤s4
t′≤s3≤t ; t′≤s4≤t

}E
(
exp
(
−ip(Xs2 −Xs1)− i(p + q)(Xs3 −Xs2)

)
exp
(
−ip(Xs4 −Xs3)

)) 4∏
k=1

dsk pqf̂(εp)f̂(εq) dp dq

= lim
ε→0

∫ ∫{
0≤s1≤s2≤s3≤s4
t′≤s3≤t ; t′≤s4≤t

} e−(s2−s1)|p|β−(s3−s2)|p+q|β−(s4−s3)|q|β
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4∏
k=1

dsk pqf̂(εp)f̂(εq) dp dq

+ lim
ε→0

∫ ∫{
0≤s1≤s2≤s3≤s4
t′≤s3≤t ; t′≤s4≤t

} e−(s2−s1)|p|β−(s3−s2)|p+q|β−(s4−s3)|p|β

4∏
k=1

dsk pqf̂(εp)f̂(εq) dp dq

Consider the first summand on the right hand side of (75). It is bounded
by∫ ∫{

t′≤r1+r2+r3≤t
t′≤r1+r2+r3+r4≤t

} e−r2|p|β−r3|p+q|β−r4|q|β
4∏

k=1

drk|p||q|dp dq (76)

≤ C(t− t′)1+a

∫
1

1 + |p|β
1

1 + |p + q|β
1

1 + |q|(1−a)β
|p||q|dp dq

where we first integrated with respect to dr4 using Hölder’s inequality with
0 ≤ a ≤ 1∫ t−(r1+r2+r3)

t′−(r1+r2+r3)

e−r4|q|β dr4 ≤ (t− t′)a

(∫ t

0

e−r4|q|β/(1−a) dr4

)(1−a)

, (77)

then with respect to dr1 using
∫ t−(r2+r3)

t′−(r2+r3)
dr1 ≤ t − t′, and finally the dr2,

dr3 integrals are bounded using (67). It is easily seen that (76) is bounded as
long as β − 1 + (1− a)β − 1 > 1, i.e. a < 2− 3/β.

Now consider the second summand on the right hand side of (75). An
attempt to use a bound similar to (76) where we bound pq by |pq| would
be fatal. Rather, we first observe that

∫
e−(s3−s2)|q|β q dq = 0 and use this to

rewrite the second summand on the right hand side of (75) as

lim
ε→0

∫ ∫{
0≤s1≤s2≤s3≤s4
t′≤s3≤t ; t′≤s4≤t

} e−(s2−s1)|p|β−(s4−s3)|p|β (78)

{
e−(s3−s2)|p+q|β − e−(s3−s2)|p|β e−(s3−s2)|q|β

} 4∏
k=1

dsk pqf̂(εp)f̂(εq) dp dq.

Now we bound this as in (76) by∫ ∫{
t′≤r1+r2+r3≤t

t′≤r1+r2+r3+r4≤t

} e−r2|p|β−r4|p|β (79)

∣∣∣e−r3|p+q|β − e−r3|p|β e−r3|q|β
∣∣∣ 4∏

k=1

drk|p||q|dp dq

≤ C(t− t′)1+a

∫
1

1 + |p|(2−a)β

∣∣∣∣ 1
1 + |p + q|β

− 1
1 + |p|β + |q|β

∣∣∣∣ |p||q|dp dq.
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Here we proceeded as in (76) except that for the dr3 integral we used∫
e−r
∣∣∣e−r|p+q|β − e−r(|p|β+|q|β)

∣∣∣ dr ≤
∣∣∣∣ 1
1 + |p + q|β

− 1
1 + |p|β + |q|β

∣∣∣∣ (80)

by arguing seperately depending on whether or not |p|β + |q|β > |p + q|β .
We claim that once again the integral on the right hand side of (79) is finite
whenever β− 1+ (1− a)β− 1 > 1, i.e. a < 2− 3/β. This is clear in the region
where |q| ≤ 2|p| since we can use the bound 1

1+|p|(2−a)β ≤ 1
1+|p|β

c
1+|q|(1−a)β . If,

however, |q| > 2|p|, we can use the bound∣∣∣∣ 1
1 + |p + q|β

− 1
1 + |p|β + |q|β

∣∣∣∣∣ =

∣∣l|p + q|β − |q|β − |p|β
∣∣

(1 + |p + q|β)(1 + |p|β + |q|β)
(81)

≤ c|p||q|β−1 + |p|β

(1 + |p + q|β)(1 + |p|β + |q|β)

≤ c|p||q|β−1

(1 + |q|β)2
.

This allows us to bound the resulting integral from the right hand side of (79)
by

c

∫
|p|2

1 + |p|(2−a)β

1
(1 + |q|β)

dp dq (82)

which leads to the same result as before.
Finally, for h ≤ 2 we have

E
(
(γ′t − γ′t′)

h
)
≤
{
E
(
(γ′t − γ′t′)

2
)}h/2 ≤ C(t− t′)(1+a)h/2. (83)

We will have h-variation 0 when (1 + a)h/2 > 1 for some a < 2 − 3/β, i.e.
(3 − 3/β)h/2 > 1. Thus we will have h-variation 0 when h > (2/3)β′. This
completes the proof of Theorem 2.

4 The Doob–Meyer decomposition

Proof of Theorem 3. It is easy to check that the proofs of Theorems 1
and 2 go through with X replaced by Y and in that case

γ′∞ = lim
ε→0

γ′ε,∞ and γ′t = lim
ε→0

γ′ε,t (84)

converge a.s. and in all Lp spaces. Let

U1Fε,t(y) = −
∫ t

0

∫
u1
(
x− (y − Yr)

)
f ′ε(x) dxdr. (85)

The proof of Theorem 3 then follows from (84) and the next Lemma.
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Lemma 3. Let {Ys ; s ∈ R1
+} be the exponentially killed symmetric stable

process of index β > 3/2 in R1. Then for any ε > 0

U1Fε,t(Yt) = Ex(γ′ε,∞ | Ft)− γ′ε,t (86)

Proof of Lemma 3. We have

γ′ε,t = −
{∫ t

0

∫ s

0

f ′ε(Ys − Yr) dr ds

}
(87)

so that

γ′ε,∞ = −
{∫ ∞

0

∫ s

0

f ′ε(Ys − Yr) dr ds

}
(88)

= γ′ε,t −
{∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds

}
−
{∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds

}
.

Now, using the fact that {Ys ; s ∈ R1
+} has independent increments

E

({∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds

} ∣∣∣∣ Ft

)
(89)

= E

(∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds

∣∣∣∣ Ft

)
− E

(∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds

)
= 0

and

E

({∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds

} ∣∣∣∣ Ft

)
(90)

= E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds

∣∣∣∣ Ft

)
− E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds

)
.

We have

E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds

∣∣∣∣ Ft

)
(91)

= E

(∫ ∞

t

∫ t

0

f ′ε
(
(Ys − Yt) + (Yt − Yr)

)
dr ds

∣∣∣∣ Ft

)
= Ē

(∫ ∞

0

∫ t

0

f ′ε
(
Ȳs + (Yt − Yr)

)
dr ds

)
where {Ȳs ; s ∈ R1

+} is an independent copy of {Ys ; s ∈ R1
+} and Ē denotes

expectation with respect to {Ȳs ; s ∈ R1
+}. Hence
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E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds

∣∣∣∣ Ft

)
=
∫ t

0

∫
f ′ε(x + Yt − Yr)u1(x) dxdr (92)

=
∫ t

0

∫
u1
(
x− (Yt − Yr)

)
f ′ε(x) dxdr.

The same sort of argument shows that

E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds

)
=
∫ t

0

∫
f ′ε(x + y)u1(x)pr(y) dxdy dr (93)

which is zero by symmetry. This concludes the proof of Lemma 3.

5 Proof of Lemma 2

Proof of Lemma 2. We have

E
(
α′ε,t(x)

)
= −

∫ t

0

∫ s

0

(∫
f ′ε(y − x)ps−r(y) dy

)
dr ds (94)

We first consider the case 1 < β < 2. Using the fact that f ′ε is an odd fuction,
Plancherel and then Fubini

−
∫ t

0

∫ s

0

(∫
f ′ε(y − x)ps−r(y) dy

)
dr ds (95)

= i(2π)−1

∫ t

0

∫ s

0

(∫
eipxpf̂(εp)e−(s−r)|p|β dp

)
dr ds

= i(2π)−1

∫
eipxpf̂(εp)

(∫ t

0

∫ s

0

e−(s−r)|p|β dr ds

)
dp

and∫ t

0

∫ s

0

e−(s−r)|p|β dr ds (96)

=
∫ t

0

∫ t

r

e−(s−r)|p|β dsdr =
∫ t

0

(∫ t−r

0

e−s|p|β ds

)
dr

=
∫ t

0

∫ r

0

e−s|p|β dsdr = t

∫ ∞

0

e−s|p|β ds−
∫ t

0

∫ ∞

r

e−s|p|β dsdr

= t|p|−β −
∫ t

0

e−r|p|β |p|−β dr = t|p|−β − (1− e−t|p|β )|p|−2β .

Hence

E
(
α′ε,t(x)

)
= i(2π)−1t

∫
eipx sgn(p)|p|1−β f̂(εp) dp (97)

−i(2π)−1

∫
eipx sgn(p)(1− e−t|p|β )|p|1−2β f̂(εp) dp.
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It is easily checked that (1 − e−t|p|β )|p|1−2β ∈ L1(R1) so that the last term
converges uniformly as ε → 0 to a continuous limit. On the other hand, it
follows from [9, formula (13), page 173] that

i(2π)−1

∫
eipx sgn(p)|p|1−β f̂(εp) dp (98)

= −π−1Γ (2− β) cos
(
(1− β)π/2

) ∫
sgn(y)|y|β−2fε(y − x) dy.

Since sgn(y)|y|β−2 is locally in L1 and continuous away from 0, this last term
converges locally uniformly away from 0 and locally in L1 to c(β) sgn(x)|x|β−2.
On the other hand, when x = 0, (94) is 0 by symmetry. This completes the
proof of Lemma 2 for β 6= 2.

For Brownian motion, we proceed differently. We first write

−
∫ t

0

∫ s

0

(∫
f ′ε(y − x)ps−r(y) dy

)
dr ds (99)

=
∫ t

0

∫ s

0

(∫
fε(y − x)p′s−r(y) dy

)
dr ds.

We have p′s(y) = −1
(2π)1/2s3/2 ye−y2/2s so that, for y 6= 0, {|p′s(y)| ; s ≥ 0} is the

density of T|y|, the first hitting time of |y| for Brownian motion. Hence∫ ∞

0

|p′s(y)|ds = 1, y 6= 0. (100)

This justifies the use of Fubini∫ t

0

∫ s

0

(∫
fε(y − x)p′s−r(y) dy

)
dr ds (101)

=
∫

fε(y − x)
(∫ t

0

∫ s

0

p′s−r(y) dr ds

)
dy

and then, just as in (96)∫ t

0

∫ s

0

p′s−r(y) dr ds = t

∫ ∞

0

p′s(y) ds−
∫ t

0

∫ ∞

r

p′s(y) dsdr, y 6= 0. (102)

Just as in (100) we see that the first integral is − sgn(y) for y 6= 0. Now
|p′s(y)| ≤ 1

(2π)1/2s3/2 |y|, so that by the dominated convergence theorem the
second integral is continuous in y. As before, when y = 0, the left hand side
of (99) is 0 by symmetry. Lemma 2 now follows.
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