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Existence of the Critical Point in φ4 Field Theory*

Oliver A. McBryan** and Jay Rosen***

Department of Mathematics, The Rockefeller University, New York, NY 10021, USA

Abstract. We consider the φ4 quantum field theory in two and three spacetime
dimensions. In the single phase region the physical mass (inverse correlation
length) m(σ) decreases continuously to zero as the bare mass parameter σ
approaches a critical value σc from above. In three dimensions the critical
point σc is in the single phase region and the physical mass vanishes there,
m(σc) = 0.

A consequence of our results is that the critical exponent v governing the
approach to infinite correlations is bounded below (rigorously) by its classical
value, 1/2.

I. Introduction and Results

In this paper we show that in the single phase region, the physical mass of the
λ:φ4:d-\-σ:φ2 :d quantum field theory, for space-time dimension d = 2,3, is a
continuous increasing function of σ which assumes all strictly positive values.
From the point of view of physics this is important since it ensures that by a
suitable choice of coupling constants these theories can describe particles of any
assigned mass; in short, the theory is mass renormalizable.

Let < >σ denote expectations for the λ:φ4:d + σ:φ2 :d euclidean quantum
field theory, obtained as a limit of expectations < >σ L for the half-Dirichlet theory
in volume L, see [1, 2] for details. We fix the Wick ordering mass μ0 throughout
the paper. The long range order =Sf(σ) and the energy gap μ(σ) are defined by:

J?(σ)2= lim <#))#•)>,,
M-oo ( U )

μ(σ)=-\im \r\~'ln(φ(0)φ(r)}σ .
|ί |-> oo

The set Σ^{σ\^(σ) = 0} of zero long range order is the single phase region
where these models are known to have a unique vacuum, see Simon [2]. By the
GKS inequalities [2, 3, 4], i?(σ) is decreasing in σ. Thus I1 is a proper right half-
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line, since i f (σ) is known to be zero for σ sufficiently large by the cluster expansions
of Glimm, Jaffe and Spencer [5], Magnen and Seneor [6], and Feldman and
Osterwalder [7], while i f (σ) is nonzero for σ sufficiently negative by the existence
of phase transitions for these models, see Glimm et al. [8] and Frohlich et al. [9].

The energy gap μ(σ) is an increasing function of σ, again by the GKS inequalities,
and clearly μ(σ) vanishes outside of the single phase region. We define the critical
point σc by:

σc = sup{σ\μ(σ) = 0}.

For σ in the single phase region (in particular, whenever μ(σ) > 0), note that μ(σ)
equals the physical mass m(σ) which is defined for any σ by:

m(σ)=- lim \r\~' In (<^0)φ(r)> σ -i f (σ)2). (1.2)
|r|->oo

Glimm and Jaffe [10], have shown that m(σ) is continuous in σ for σ > σ c + ε, any
ε > 0 (while their proof is for d = 2, it extends in a straightforward way to d = 3).
Also, the cluster expansions [5-7] show that m(σ)joo as σtoo.

Our principal result is a proof that for the models studied here, m(σ) = μ(σ)J,0
as σ[σc. Specifically we show that for any o2>oc there is a constant such that

m{p) = μ(σ) S const (σ - σc)
1 / 2, σc < σ ̂  σ2 . (1.3)

Thus from the discussion in the previous paragraph, m(σ) takes on continuously
all values in (0, oo) as σ ranges over (σc, oo). The bound (1.3) implies that the
critical exponent v governing the approach to infinite correlation length, defined
by rn(σ)~(σ — σc)

v, is bounded below by its classical value: v ^ 1/2. Further bounds
on critical exponents follow as in [10]. In particular, for the exponent a for the
specific heat we obtain α S 2v if d = 2 and α ̂  v/2 if d = 3.

The bound (1.3) implies that μ(<τc) = 0 but this does not imply that the physical
mass m(σ) vanishes at the critical point, because of the possibility that the critical
point may not be in the single phase region Σ. However in the case d = 3 we can
show that σceΣ, and thus m(σc) = 0\ To show that σceΣ, we note that the Lehmann
spectral formula provides a uniform bound, for σ > σc, on the decay of the two
point function:

^ ^ - ' M ^ l , (1.4)
= \r\ -'<φ(O)φ((l 0))> σ ^ | rΓ 1 (φ(O)φ((l 0))>σc.

Here dρσ(a) is the spectral measure for the two-point function and we have used
the monotone decrease of the two-point function as a function of σ.

The bound (1.4) extends to the critical point σc, showing σ c e l , because
(φ(0)φ(r))σ is continuous from above in σ. To prove continuity from above in σ
we note that (φ(0)φ(r)}σtL is continuous in σ, and is monotone increasing both
as L increases or σ decreases, allowing the interchange of the limits Lf oo, o[σc.

The result m(σc) = 0 is also true for lattice φ4 field theories and for Ising models in dimensions

^ 3 (see the Appendix)
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Our results still leave open a number of questions about the nature of the
critical point in :φ4:d theories. For d = 3 there could be an interval {σ0, σc), either
open or semi-open, of values of σ lying in the single phase region but below the
critical point. Thus the physical mass m(σ) would vanish in the interval {σ0, σc]
as in:

JS?(σ)>0 ί m(σ) = O Γ m(σ)>0

Behavior of m(σ), if(σ).

Similar behavior could occur for d = 2, with the additional possibility that the
physical mass might be discontinuous at the critical point. This could occur if the
long range order is discontinuous at σc: i f (σc) φ 0. Behavior of this type actually
occurs in certain Ising type models with long range interactions and is known as
the Thoules's effect [11]. Finally, we are unable to say anything about the behavior
of the physical mass in the multiphase region. In particular, we cannot rule out
the possibility that m(σ) is discontinuous from below at er0, or that there might be
regions below σ0 where m(σ) vanishes. Such pathologies are not expected to
appear in :φ4:d models, the anticipated picture for the critical point being that
which occurs in the exactly soluble two-dimensional Ising model where σo = σc,
m(σc) = 0 and the physical mass m(σ) is continuous and strictly monotone increasing
as one moves away from σc in either direction, see for example [12].

Glimm and Jaffe [10], were the first to study the dependence of the physical
mass on σ. Using the Lebowitz inequality [2, 13, 14] they established continuity
of m(σ) above σc. Using related methods, Baker [15] showed the continuity of a
pseudomass in lattice φ4 models and in [16], Rosen showed how these ideas could
be modified to prove continuity of the mass itself for φ4 lattice fields in the single
phase-region. This paper extends these ideas to the continuum limit for space-
time dimensions d = 2,3.

In Section II we define a pseudomass μ\σ) (more precisely it is a pseudo-
energy gap) as the limit of finite volume quantities μ~(σ, L). The μ~(σ,L) are
defined so as to be always strictly positive, even for σ < σc. In section III we relate
the pseudomass and energy gap by bounds of the form

μ~(σ)^μ(σ)<;constμ\σ). (1.5)

In Section IV we show that μ~(σ, L) is Lipschitz continuous in σ, using the Lebowitz
inequality [2,13, 14] and φ-bounds [2,18,19]. Heuristically, our proof amounts
to obtaining a bound of the form:

— μΊ(σ, L ) ^ c o n s t μ T ^ L ) - * - 1 , (1.6)
dσ

with the constant uniformly bounded in σ, L for σ in compact sets. Since μ~(σ,L) > 0,
such a bound makes sense, and we may integrate (1.6) to obtain Lipschitz continuity
of μ~(σ, L) and thus also of μ~(σ). The bound (1.5) implies that μ~(σ) = 0, σ<σ c,
and continuity then implies μ~(σc) = 0. Therefore, again using (1.5), μ(σc) = 0 and
μ(σ)jθ as σ[σc. Thus all of our results follow from the continuity of μ~(σ) The
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bound (1.3) is proved in [10], for d = 2, under the assumption that m(σ)->0 as
σ->σc (which we have now proved). The proof given in [10] applies also to the
case d = 3.

II. Definition and Properties of the Pseudomass

Let σ! < σc < σ2 be fixed numbers on either side of σc. We will use σ l 5 σ2 as reference

points and throughout the paper we assume σγ ^ σ ^ σ 2 . By the GKS inequalities

[2-4],

0 < <#))φ((l/2, 0))> σ^#))φ((l/2, 0))>ffl = A2 < αo. (2.1)

It is convenient to normalize the field by ψ(r) = φ(r)(l +A)'1 so that

0 < <φ(0)ψ(r)>σ>Lg <φ(0)v(r)>σ< 1, |r| ̂  1/2, σ ^ ,

μ(σ) - - lim \r\ ~' In <ψ(0)ψ(r)} , (2.2)

where we have used the monotonity properties of the two-point function in L, \r\.
We define the pseudomass μ~(σ) as the limit of finite volume quantities μ~(σ, L)

which are monotone decreasing in the volume \L\ ̂  1 of squares L centered at the
origin in spacetime:

μ (σ) = lim μ Jσ, L) — inf μ ~(σ, L). (2.3)
L->oo L

For each pair of points r, seL, \r-s\ ̂  1, we define μ^(σ? L, r, s) to be the unique
solution μ~ of the equation

i Ξ < t / ; ( r ) v ; ( s ) > σ 5 L (2.4)

and we define the finite volume pseudomass by

μ'\σ9L) = iΏΪ{μ'Xσ,L,r9s)\r9seL9\r-s\^l}. (2.5)

That (2.4) has a unique, strictly positive solution follows from the fact that the
strictly monotone decreasing function e~x(ί+xid+1)/2)~1 ranges over (0,1) as x
ranges over (0, oo), while the right side of (2.3) lies in (0, 1) by (2.2). The monotone
decreasing property of μ~(σ, L, r, s) and μ~(σ, L) in L follows since <φ(r)t/;(s)>(T>L is
monotone increasing in L. Similarly, μ~(σ), μ~(σ, L\ μ~(σ, L, r, s) are all monotone
increasing in σ since (ψ(f)ψ(βΐ)σ,L i s monotone decreasing in σ. We note that by
the continuity of <tp(r)i/?(s)>σjL in r, s there are rσ L, sσ LeL with

μ~(σ, L) = μ1σ, L, rσ>L, sσ;L)>0 .

We will later use the following result:

Lemma 1. μ~(σ, L) z"s continuous from below in σ.

Proof. Let σ^σ. By compactness, there is a subsequence σ} of σ, and a pair of
points r, seL with rσjtL->r, 5σ,.,L^5, | r - s | ̂  1. Thus by the continuity of μ~(σ,L,r,s)
in σ, r, 5 :

μΊ[σ}, L) = μ\σά9 L, r^>L, sσ ;. ) L)-—->μ^(σ, L, r, s)^μ~(σ, L).

But μ~(σ}, L)^μ\σ\L) by monotonicity in σ; continuity from below in σ follows.
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III. Comparison of Energy Gap and Pseudomass

We relate the properties of the pseudomass to the energy gap μ(σ) by the following
result:

Theorem 2. For

Proof. To establish the left-hand inequality, we fix r, \r\ ^ 1. For any L 3 r, we have
by (2.4) and μ ~(σ, L) ̂  μ ~(σ):

-\r\-1\n<kyWMr)>σ,L^μW + \rΓ1W

Since the right-hand side is independent of L,

The left-hand inequality of Theorem 2 follows on taking |r|—>oo.
To establish the right-hand inequality, we prove below that

>ff, | r | ^ 1. (3.1)

Thus for each L we have by (2.4) and translation invariance:

μ(σ) S - 2\rσfL - sσ>L\ ~

where we have used ln(l + x f l )^ln(l + x ) f l ^ α x , α ^ 1, x^O. The right-hand
inequality of Theorem 2 follows on letting L->oo.

To prove the bound (3.1), we introduce test-functions /( )εC^(Rd), with
supports in the sphere of radius 1/4, and we define smeared fields by ψf{r) =
§ddxf(x — r)ψ(x). Thus by translation invariance and Osterwalder-Schrader
positivity [17]

(ψf(0)ψf(r)}σ = iψj{ - n/2)ψf(r - n/2)}σ, n = (1/2, 0),

(3-2)

^ <Ψf(0)ψf(n))σ lim (Ψf(0)ψf(2\r -
I —* o o

where in the second to last step, we have iterated the previous inequality infinitely
often, while in the last step we have used the definition (2.2) of μ(σ). The bound
(3.1) now follows from (3.2) by choosing a sequence /( )-^(d)(')> a n d noting that
for \r\^ 1, \r-n\^\r\/2 and that (ψ{0)ψ{n)}σ^ 1 by (2.2).

IV. Continuity of the Pseudomass

Theorem 3. For any σ l 5 σ2 there is a constant k(σ1? σ2) with:

2 2 σ 2 . (4.1)
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Proof. It is sufficient to prove (4.1) with μ~(σ) replaced by μ~(σ, L) and a constant k
independent of L. We will show below that there is a constant c, independent
of L and of σ, σί ^ σ ̂  σ2, such that

^μ~(σ,L,r,sy + 2 \ r M L S c . (4.2)

Thus for each σe[σ l 5 σ2), there is a σ"(σ, L)>σ with

μ V , L, rσ?L, sσ,L)d + 2 - μ l σ , L, rσ,L, sσ?L)d + 2 ^ (c + l)(σ'-σ), (4.3)

for σ ^ σ ' ^ σ " . Since μ~(σ', L)^μ~(σ', L,rσtL, sσ>L), with equality when σ' = σ, (4.3)
implies that for σ ^ σ ' ^ σ " :

μ\σ',L)d + 2-μ\σ,L)d + 2S(c+l)(σ'-σ). (4.4)

Let I σ L denote the maximal interval in [σ, σ2] containing σ and such that (4.4)
is valid for σ'e J σ L . To complete the proof of Theorem 3, we need only show that
Jσ>LΞΞ[σ, σ2] for all σ,L. By Lemma 1, IσL is closed: / f f ϊ L=[^jθ'Ί f° r some
σΛ=σ\σ,L). If σ^φσ2, then Iσ^LtIσfL, and yet for σ'elσΛh\

/r(^Lr2-^wr+2=/r(^Lr^

which implies that Iσ*>LQIσ}L. The contradiction forces the conclusion that σ" = σ2.
It remains to prove the bound (4.2). Differentiating the defining relation (2.4)

for μ~ΞΞμ~(σ5 L, r, 5) with respect to σ we obtain:

dσ

= J L

where we have used the Lebowitz inequality [2,13,14] in the last step, and (1+ A)
is the normalization factor relating φ and ψ, see (2.1). Bounding below by 1 the
term in rectangular brackets, we have:

^Sa+A)2\r-s\-\ψ(r)ψ(s)>-l$Lddt(ψ(r)ψ(φ (4.5)

We decompose the region of integration into four parts: L = I, II, III, IV and we
denote the corresponding contributions to (4.5) by Dl9..., D I V Here 1 = {teL:\t — r\,
| ί-s |^l}, II = {teL:\t-s\^l>\t-r\}9 III = { ίeL: | ί-r |^ l> | ί-s | } and
IV= {teL:\t — r\, \t — s\< 1}. The derivative in (4.2) is to be evaluated at the point
r = rσL, s = sσL and in the following we set r, 5 equal to these values.



Existence of the Critical Point in φA Field Theory 103

In region I, using the definition (2.4) and the fact that μ~(σ,L) = μ~(σ,L,r,s),
we obtain

1 μdt(\t\\t-(l,O)\)~«+1)l2

Here and in what follows, all constants c; are uniform in L and in σ, for σε [σ 1 ; σ 2 ] .
In particular using monotonicity in σ, L (and identifying L with \L\), we may
choose

For region II, we have the bound:

^ 3 J ddt<ψ(0MΦσ, (4.6)
| ί | < l

where c3 = (1 +A)22{d+ 1 } / V ( < 7 2 'υ and we have noted that

An identical estimate applies to D m , while for region IV we note that either \r — t\
or |ί —s| is greater than 1/2 since | r - s | ^ l . Thus by (2.1) either (ψ(r)ψ(t)}σ or
(ψ(t)ψ(s)}σ is bounded by 1 so that:

σ,L)\r-s\Yd+ί)l2)e^σ^r-^ j ddt(ψ(0)ψ(φσ,

j ί = (4-7)

where c4 = {l+A)2{l+{2μ\σ2, ψ+Dβya (σ2,i) a n d w e h a v e n o t e d t h a t r e g i o n I V

is empty unless \r — s\^2. To bound the integrals in (4.6), (4.7) we observe that by

translation invariance:

j Λ<ψ(OM0>^(2π)"1 J dds J Λ<V(s)φ(ί + s)>σ

^ \ dds \ ddr(ψ(s)ψ(r)}σ,r = t + s,
\s\Z2 \r\£2

2 2 , (4.8)

where ψ(χ2) denotes the field ψ smeared with the characteristic function χ2 of the
circle (sphere) of radius 2, and in the last step we have used a φ-bound [2, 18, 19].
Combining (4.5), (4.6), (4.7) we obtain, with c6 = (

where cΊ = c6μ~(σ2, l)
d + \ which completes the proof of (4.2).
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Appendix

Theorem. In lattice φ4 field theories or in Ising models, the critical point is in the
single phase region for dimension d^3.

Proof. Without loss of generality we consider the lattice spacing to be one. By a
result of Frohlich et al. [9], the two-point function in momentum space has the
representation:

where for σί^σc^σ2 there is a constant a with

0Sfσ(p)Sa/p\σί^σSσ2. (A.2)

For δ~1 integral, let hδ(x) = (2π)d/2(l + 2δ~ ^ " ^ ( x ) where χδ(x) is the characteristic
function of {xeZd:\xi\^δ~ί

9ί=l, ...,d}. The lattice fourier transform of hδ

satisfies, for d*z39

ft~,(0)=l, f ddpp-2\h~δ(p)\->0 as δ->0. (A.3)

Thus from (A.1)-{A.3), we see that the constant cσ is given by:

cσ}δcσ = \imcσ}δ= lim j ddpSσ(p)h~δ(p).

By definition, cσ = 0 for σ > σc and we wish to prove that cσc = 0, which is equivalent
to showing that cσc ό-+0 as δ^O. Assuming for the moment that cσδ is continuous
from above in σ, it is therefore sufficient to prove that cσδ converges to zero as
<5->0, uniformly in σc<σ^σ2. This follows immediately from the bound:

To prove the assumed upper semi-continuity of cσδ in σ, note that

(p)= Σ SJixMx)
xeZd

lim ΣS*'.L(XMX). (A.4)
xeL

Since hδ(x) is positive with Sσ,L positive and monotone increasing both as σ'->σ +
and as L-^oo, the two limits in (A.4) may be interchanged, proving the required
upper-semi-continuity in σ.
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