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LAWS OF THE ITERATED LOGARITHM FOR THE LOCAL TIMES
OF SYMMETRIC LEVY PROCESSES AND RECURRENT
RANDOM WALKS!

By MICHAEL B. MARCUS? AND JAY ROSEN
City College of CUNY and College of Staten Island, CUNY

Both standard and functional laws of the iterated logarithm are obtained
for the local time of a symmetric Lévy process, at a fixed point in its state
space, as time goes to infinity. Similar results are also obtained for the dif-
ference of the local times at two points in the state space. These results are
sharp if the exponent of the characteristic function that defines the Lévy
process is regularly varying at zero with index 1 < 8 < 2. The results are
given in terms of the a-potential density at zero, considered as a function of
a. Without additional effort our methods give essentially the same results
for the number of visits of a symmetric random walk to a point in its state
space and for the difference of the number of visits to two points in the state
space. A limit theorem for the sequence of times that a random walk returns
to its initial point is obtained as an application of the functional laws.

1. Introduction. Let X = {X(¢), ¢ € R*} be a symmetric Lévy process
and set

(1.1) E° exp (iAX(t)) = exp (— tp(N)),

where

(1.2) PO =2 / (1  cos ewdu),
0

for v a Lévy measure, that is, [;°(1 A x®)v(dx) < co. We also include the case
Y(\) = X\2/2, which gives us standard Brownian motion.

The process X has a local time if and only if (v + ¥()\))~! € LY(R*), for some
~ > 0 and, consequently, for all v > 0 (see [16]). For symmetric Lévy processes
the transition probability density p;(x,y) is a function of |x — y|, and we denote
p:(0,v) by p;(v). The a-potential density u*(x,y) of X is similarly a function of
the difference of its arguments. We denote u(0, v) by ©*(v). For symmetric Lévy
processes we have

*° 1 [ cosAx
a _ —at —— —
(1.3) u (x)—/0 e pt(x)dt—r/o a+ o) d\ Va>0.
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In general u°(0) does not exist. Nevertheless we can define

20N _ 1: ) _ oy - L [ 1—cosAx
(1.4) o) = lim (u(0) ~ u°(@) = = /0 e an
We also define
(L5) K(a) = u®(0)= / a+¢()\) Va>o0.

In all that follows we will assume that the Lévy processes considered here
satisfy the following two conditions:

1 dx
(16) A E()\—) = 00,
* Jog(1 + \)

Condition (1.6) is equivalent to the Lévy processes being recurrent (see, e.g., [2],
13.23). Clearly this condition is required in order to say anything interesting
about the growth of the local time at a fixed level, as ¢ goes to infinity. It follows
from (1.6) that

(1.8) lin}) Kla) = oo

Also, to understand the function x better, let us note, as we indicate in
Remark 2.7, that if ¢ is regularly varying at zero with index 1 < § < 2, then
is regularly varying with index —1/3, where 1/8+ 1/8 = 1. In fact,

L(1/8)r (1+ 1/8)

(1.9) Ae(N) ~ ¥~ as\— 0,

where we use the notation f()\) ~ g(\) as A — 0 to mean lim,_,o f(\)/g(\) = 1
and similarly for the limit as A — oo. [When ¢ is regularly varying one can
make sense of 1y~ ! in (1.9) even when 1 is not monotone; see Remark 2.7.]

Since (1.7) implies that (1 + ¥(\))~! € LY(R*),X has local times which we
denote by {L},(¢,y) € R* x R} and normalize by setting

(1.10) E"(/ooe—t dL{) =ul(x,y).
A .

THEOREM 1.1. Let X be a symmetric Lévy process as defined in (1.1) for
which (1.6) and (1.7) are satisfied, and let {L}, (t,y) € R* x R} denote the local
times of X. Let 1 be regularly varying at zero with index 1 < 8 < 2. Then

0 _
(1.11) lim sup L, =pYBBYE g

t—oo  (loglogt)s ((log logt)/t)
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and

=V20(x)a/*al/® a.s.,

LO —L*
1.1 li 4 ¢
12 o o g Tog D72 (g Tog 2)/7)

where @ = 2B and 1/a+1/a = 1. Furthermore, (1.12) also holds with the numer-
ator on the left-hand side replaced by sup,, <, LY — Lz,

We refer to (1.11) as a first-order law of the iterated logarithm because the lo-
cal time appears alone, whereas we call (1.12) a second-order law of the iterated
logarithm because it involves differences of local times.

Condition (1.7), which is only slightly stronger than the necessary condition
for the existence of the local time, is a technical condition. We do not understand
it because it depends on 1()\) for ) at infinity, whereas, as one can see from (1.8)
and (1.9), the rate of growth of the local times, as a function of ¢, depends on
1(\) [and hence on k()\)] for A near zero. Generally speaking, the behavior of
1(A) for X\ near infinity determines the moduli of continuity of the local times
for fixed ¢, whereas the behavior of 1()\) for A near zero gives a measure of how
recurrent the Lévy process is.

The work done to prove Theorem 1.1, with very little additional effort, gives
us analogous results for the local times of symmetric random walks. Let X =
{Xy, n > 0} be a symmetric random walk on the integer lattice Z, that is,

(1.13) X, =) Y,
i=1

where the random variables {Y;, { > 1} are symmetric, independent and identi-
cally distributed with values in Z. We assume for convenience that the law of Y;
is not supported on a proper subgroup of Z. The process X has symmetric tran-
sition probabilities p,(x —y) = p,(x,y) = p,(0,x — y). In this case we define the
a-potential

(1.14) ux) =Y e p,().
n=0

(We will use the same notation as we did when considering Lévy processes
since it will always be clear to which processes we are referring.) The local
time L = {L},,(n,y) € N x Z} of X is simply the family of random variables
L3, = {number of times j: X; =y, 0 <j < n}. Note that, analogous to (1.10),

(L.15) E*Y e (I - L) =u®(x —y).

n=0
Just as we did for Lévy processes we set .

(1.16) k(o) = u®(0).



LIL FOR LOCAL TIMES 629

Let
1.17) ¢\ =Ee*, X\ e [-m,7l.
It follows that
pax) = 1 /w cos Ax ¢"(\)d\
T Jo
and
agey_ 1 [T cos Axd)
(1.18) u®(x) = 7r/0 T exp(—a) 300"
Thus
1 /7 d
(1.19) Kkla) = ;/0 T exp(—a)d(V)’
and we define
(1.20) o®(x) = lim (u*(0) — u®(x)) = 1 / Tlocshx g,
’ a—0 ™ Jo 1- ¢(A) )
We now set
P(A) =1 — d(\).

It is easy to see that (1.9) also holds for x and v as we defined them for symmetric
random walks. Note that when 1 is regularly varying at zero the random walk is
in the domain of attraction of a stable process. Theorem 1.1 carries over almost

verbatim for symmetric random walks.

THEOREM 1.2. Let X be a symmetric random walk as defined above and let
Kk, and o be as defined for X. Assume that (1.8) is satisfied and let {L},,(n,y) €
N x Z} denote the local times of X. Then (1.11), (1.12) and the comment imme-
diately following it of Theorem 1.1 hold as stated except that the limit superior
and the supremum is taken over the integers.

The techniques of Theorem 1.1, along with a clever idea of Finkelstein [11]
used to prove functional laws of the iterated logarithm for empirical distribu-
tions, enable us to obtain analogous laws for the local times of symmetric Lévy
processes and recurrent random walks. )

Let B? denote the set of functions f € C(0, 1) such that f(0) = 0, f is abso-
lutely continuous with respect to Lebesgue measure and fol [f'(x)|Pdx < 1. Let
Bfl denote the monotonically increasing functions in B?. It follows, as in the

classical case of § = 2, that Bffl is compact in C(0, 1). Set
Ly

B 1
’Y(ﬂ)(loglog t)n((loglog t)/t) 3 x<1,

(1.21) Ly(x) =
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where

(1.22) ~(B) = pYPBE.

THEOREM 1.3. Let X be a symmetric Lévy process as defined in (1.1) for
which (1.6) and (1.7) are satisfied and for which 1 is regularly varying at zero
with index 1 < B < 2. Then the set of functions {L,(-): 1 <t < oo} C C(0,1) is
relatively compact in C(0, 1) and the set of its limit points is Bﬁ almost surely.

Essentially the same result is valid for symmetric random walks in the do-
main of attraction of a stable process of index 5 > 1.

THEOREM 1.4. Let X be a symmetric random walk and let x and v be as
defined for X. Assume that (1.6) is satisfied and that ) is regularly varying at
zero with index 1 < 3 < 2. Set

KB -1f)  k___k+l
v(B)(loglogn)x((loglogn)/n)’ n-"" n
Then the set of functions {L,(-): 1 < n < oo} C C(0, 1) is relatively compact in
C(0, 1) and the set of its limit points is Bffl almost surely.

(1.23) L,(x) =

As a corollary of Theorem 1.4, we obtain a limit theorem for the regeneration
times of symmetric random walks in the domain of attraction of a stable process
of index 8 > 1.

THEOREM 1.5. Let X be a symmetric random walk and let « and ) be as
defined for X. Assume that (1.6) is satisfied and that 1 is regularly varying at
zero with index 1 < 8 < 2. Let p; < pa < --- denote the sequence of times k for
which X}, = 0. Then, for any q > 0, we have

lim sup 1 Z P}
(1.24) n—oo nd(loglogn)x((loglogn)/n) (ien}

=v(B)1 + qB)~YB a.s.

Another corollary of Theorem 1.4 gives us a refinement of one of the results
in Theorem 1.2. Let {L?, n € N} be the local time of a symmetric random walk
at zero. Consider the set of times j such that, for afixed 0 <c¢ <1,

- loglog j
(1.25) LJ(-) > cvcﬂ)(loglogj)n(—(gjo—g]>.
Set
loglogj )
j )

(1.26) aj = { L, i LP> cv(_ﬂ')(loglogj)n(

0, otherwise.
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The next theorem follows from the methods of Strassen ([22], example (v) in
Section 3).

THEOREM 1.6. Let X be symmetric random walk that satisfies the hypotheses
of Theorem 1.4, and let LJ(.) and a; be as defined in (1.25) and (1.26). Then

limsup%Zaj: 1—exp (—Eﬂ(ciﬁ - 1)) a.s.

n—oo ]=1

We were attracted to questions about the rate of growth of local times of
Lévy processes by the second-order law of the iterated logarithm of Csaki
and Féldes [5], where this result is obtained for the local times of Brownian
motion. A similar result for the simple random walk was obtained earlier by
Csorgt and Révész [7].

Our approach is essentially the same for first- and second-order laws. The
first-order results we give in Theorem 1.1 are contained in a 1971 paper by
Fristedt and Pruitt [12] although they do not obtain the value of the constant
in the limit. Their result is a consequence of the fact that the local times of Lévy
processes are the inverses of subordinators and they use the fact that subordi-
nators are independent increment processes. This approach does not extend to
second-order laws. The earliest first-order theorem with the constant evaluated
was proved by Kesten [16] for Brownian local time. Donsker and Varadhan [9]
obtain first-order laws for the local times of stable processes also with the con-
stant evaluated. Our analogue of (1.11) for symmetric random walks, which we
state in Theorem 1.2, was obtained earlier by different methods by Jain and
Pruitt [13]. Our work on functional laws of the iterated logarithm was stim-
ulated by the results of Csaki and Révész [6], who consider the local times of
Brownian motion and the simple random walk.

2. Estimates of moment generating functions. Let
(2.1) f(s,t) = E®exp(sL?) and g(s,t) = E®exp [es(L{ — Lf)],
where ¢ is a Rademacher random variable independent of X, that is,
(2.2) Ple=1)=P=-1)=1.
Continuing the notation of Theorem 1.1, we define .
2.3) wla,x) = u°‘(x) and h.(a) = kX (a) — £%(a, x).

Note that for x fixed, k() is strictly increasing as o decreases to zero. Also, we
have by (1.5) that

(2.4) k() = (e, 0) =u*(0) and o2(x) = k(0) — x(0,x).
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The Laplace transforms of f(s, ¢) and g(s, ), considered as functions of ¢, with s
fixed are

(o0) 1
= —aot =
@5)  L(fs,0) _/0 e™*fls,0)dt = =) Ka)s < 1
and
26) L(gs,t) = / elgls,Ddt= —— . hya)s?<1
' ’ 0 ’ a(1l - hy(a)s?)’ * '

These relations can be obtained by standard Markov process techniques. We ob-
tained them in [17] by a simple application of the Dynkin isomorphism theorem.
We proceed to estimate the inverse Laplace transforms of the right-hand sides
of (2.5) and (2.6). The next lemma is an application of the monotone density
theorem for regularly varying functions (see [3], Theorem 1.7.2).

LEMMA 2.1. Assume that « is regularly varying at zero with index —1/ .
Then

@.7) W %m()\) as A — 0.

Let us also note that it follows from (1.7) that, for all 7' > 0,

(2.8) /oo ) dy < o0.
T Y

THEOREM 2.2. Let X = {X(¢), ¢t € [0,00)} be a symmetric Lévy process with
local times LY and L¥ at 0 at x, respectively. Assume that k() is regularly varying
at zero with index —1/8 and that (2.8) is satisfied. Then there exists an sy > 0
such that, for all s € [0, s¢],

(2.9) |E° exp(sL?) —w(s) exp[n‘l (%)t] ‘ < Cexp[%n_l (%)t] Vit>0,
and

EC exples(LY — L¥)] — v(s) exp[hx‘1 (%) t] 1
2.10) °

<C exp[—;-h;l (s—12->t] Vie>o0,

where k™! is the inverse of k and h;! is the inverse of h, with x fixed. Also, w
and v are real-valued functions satisfying

(2.11) lins w(s) = liI% v(s) =B,
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and C and C' are constants depending only on sy and .

Forz=x+1iy, x > 0, set

1 [ d
(2.12) Kz(Z) = ; o M
Let N = N(§) be a fixed positive number for which
2 \V% 1

We will be concerned with r(z) for z = x¢ + iy, for some xy > 0 fixed. Under the
assumption that « is regularly varying at zero with index —1/, given ¢ > 0,
let x, be small enough so that for all x, € (0, ]

vY/B k()
r(x)

In what follows we will use the symbol C to indicate a nonzero constant not
necessarily the same in each occurrence.

(2.14) 1-€e< <l+e V1<v<2N.

LEMMA 2.3. Let « be regularly varying at zero with index —1/8 and assume
that (2.8) holds. Let z = xo + iy, xo > 0, where x, satisfies (2.14) and let N satisfy
(2.13). Then

(2.15) |K6(2)| < V2k(xo +) Vy >0,
2.16) |52 ay < cxtva)
Nxy Y
(2.17) | k(o +iy)| > n(%), 0<y< %
(2.18) [Im k(g +iy)| > Cr(@V + Lxo), % <y < Nx,.

ProorF. Inequality (2.15) is immediate since

In(z)IS/o (( 1/23‘/_2% YO+ 20 +y

() + xo)2 +y2)

The inequality in (2.16) follows by (2.8) and the regular variation of  at zero.
To get (2.17) we note that, since y < x(/2,

|k(xo +2y)] > Re k(xg + iy)
(2.19)

.

° d\ %)
2/0 PN + 20 +x2 /4 (P(N) + %) >&< 4 )’
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finally, to get (2.18) we note that, by (2.7),

oo 0 dX
Im K(2)| = Y x>
|Im #(2)| /0 (B +x0) % +y? 2 /o (zp(,\)+xo)2+(Nxo)2‘
(2.20) S % [ dA =5 (N +1)
= 2/0 (B + (N + 1))’ 2( S xo))
> Cr((N + 1)xo). m]

PROOF OF (2.9) IN THEOREM 2.2. We will estimate f(s,¢) by estimating the
inverse Laplace transform of (a1 — x(a)s))~1. Since
1 1 k(a)s

2.21) a(l—@)s) @ a(l— o)

and since £(1) = (1/a), we have

(2.22) L -1) = ﬁ)?)
and so

1 e?k(z)s
(2.23) fl&)-1=5= /r 2(1 - K(@)s) @

where I = x’ + iy, for some fixed x’ for which «(x')s < 1. Note that lim, o «(x)
= oo and «(x) is strictly decreasing as x increases. For each s choose x( such that
k(2x¢)s = 1. However, only consider those s € (0, sg], where s; is small enough
so that (2.14) holds for xy. Take x’ > 2x¢. [The expression on the right-hand side
of the equality sign in (2.23) is equal to

fs,t)— 1= ex't}"l.}'(e_"/t (f(s,t) — 1)),

where F and F~! denote the Fourier and inverse Fourier transforms. As we
shall see, the integral is in L! and so f(s, ) = f(s, ), for all ¢.] To evaluate this
integral we consider a rectangular contour consisting of the straight line seg-
ments {x’ +iy, - M <y < M}, {xo +iy, —M <y < M} and the horizontal lines
that join them at y equal M and —M. Passing to the limit as M goes to infinity
and taking into account the fact that value of the integrals along the sides of
the rectangle parallel to the x axis go to zero, we get

o K(z)s £ _1<1>}
fGs,t)—1 = Res{z————————(l_n(z)s)ez.z-/e 5

o it Ko + iy)s
- dy,
1 — k(xg +iy)s

(2.24)

+e*! Re l
i Jo (xo +1y)
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where

KRS . _ —1(1)} 2t z— k" X1/s)
Res{z(l — K(2)s) eE=r\s)rTe z—u}l-I‘I}l/s) z2(1—k(2)s)

By I'Hopital’s rule this last term equals e/(—(x~1(1/s)sk/(x=1(1/5)))~1).
Let w(s) = —(xk~}1/s)sx'(k~}(1/s)))"!. Then setting s = 1/x(c) we see
by (2.7) that

Kla) =
ak'(a) ~ B.

Thus we get the term in the absolute value in (2.9). This is the principal term
in our estimate. We complete the proof of (2.9) by showing that

i 1
2.2
(2.25) /0 @2 +y2)0/2

[The 1 can be absorbed into the right-hand side of (2.9).] We show that

lim w(s) = lim —
s—0 a—0

K(xg +1y)s
1 — k(xg +2y)s

<C.

' k(xg + iy)s
— Y | < <y <

(2.26) 1 — klxg +iy)s| — G, 0<y<Nx,
which will give us

Nz 1 K(xg + iy)s
(2.27) /0 T T e | & SNC.
We first obtain (2.26) for 0 <y < xy/2. We have
2.28) Ren(s) - < > CRenls), 0<y< A,

since, by (2.14) and (2.19),

(20) K(2xo) 5\"?
B O Y <1 - <§> '

Using (2.28) we see that, for 0 <y <x,/2,
2 _ (Re m(z))2 + (Imm(z))2
(Rer(z) — 1/5)” + (Im 5(2)”
(Rer@)” + (Imr@)*  _ 1

T C?(Re k@)’ + (Im k(z))® ~ C*
When x¢/2 < y < Nxo, by (2.15) and (2.18),

sk(z)
1 —sk(z)

sk(z) |2 (Re m(z))2 \ 26((V + 1)xo)
1—sw@)| T+ (Im #(2))? si+ Cr((N + 1)x) <€
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Thus we get (2.26) and hence (2.27).
Now note that, for y > Nx,, by (2.14), (2.15) and the fact that « is decreasing
on (0, c0),

V25((N + 1)) 2 \VP
2 <va(5ay) -

By (2.13) this is less than . Thus |sx(z)/(1 — sk(2))| < Cs|k(2)|. Therefore,

|sk(2)] <

oo 1 k(2)s * klxg +y)
dy <C . d
-[on (2 +y2)1/2 |1 — Kl2)s y=59 Nxo Y
<Cs ) du.
Nxo

Using (2.16) we see that this is less than or equal to
Csk(Nxg) < C.
Thus we obtain (2.25) and hence (2.9). O

The proof of (2.10) mimics the proof of (2.9). For fixed w set

1 + cos \w
(2.29) p) = /0 iz d) = k(2) + Kz, w),
(2.30) q(@) = /0 1—;(—;% ) = K(2) — Kz, ),
(2.31) h(z) = p(2)q(2).

We will take h(z) as the analytic extension of (k(a) + ko, w))(k(a) — Ko, w)).
Analogously to Lemma 2.3, we have the following lemma.

LEMMA 2.4. Let N and xq be as given in (2.13) and (2.14). For w fixed and
z = x9 + iy, we have

(2.32) h(x) ~ 2rk(x)q(0), asx — 0,
(2.33) |h(2)| < 4k(xo +y)q(0), Vy >0,

2.39) Ihxo +iy)| > (1 — 20k (%) 0<y<®,
(2.35) IIm Ao +iy)] > Ch((N + Lxo), 2 <y <Na,

where € = e(xy) > 0 can be taken Qarbitrarily small for xo > 0 sufficiently small.

ProoF. Clearlyq(x) 1 q(0) < oo asx | 0. Let us take xo smaller, if necessary,
so that we also have )

(2.36) (1-)g(0) < g (V2 + 1)o ) < g(0).
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On the other hand p(x) > «(x) goes to infinity as x | 0. Thus, since
(2.37) h(x) = (2k(x) — q(x))q(x),
we get (2.32). To obtain (2.33) we note that, as in (2.15),

()| < V2 plxg +¥) < 2V2 Klxg +y),
la2)] < V2 qlxo +y) < V2 q(0).

Note that proceeding as in the proof of (2.17) and using (2.36) we see that, for
0 < y S xO/ 2’

5%
(2.38) |g(xo +iy)| > q( . ) > (1 - £)q(0).
Also by (2.36) and (2.37) we have, for 0 <y < x,/2,

(2.39) h<5:°> <2(1+6)n< ) )

and again by (2.37), with x replaced by x, + iy, and also by (2.17) and (2.38) we
have, for 0 <y < x4/2,

(2.40) h(xg +iy) > 2(1 — €)rklxg + iy)q(0) > 2(1 — s)n( ) (0).

Combining (2.39) and (2.40) we obtain (2.34). To obtain (2.35) we note that, for
x0/2 <y < Nxy, as in (2.20),

1 + cos \w

0 (PO + (N + D)

Imp(z)| > %

= %( — &' (N + Do) — &' ((V + 1)x0’w))

> %( K (N + 1)x0)) Cr(V + Do),

and it follows, as in (2.19), that

_ 0o 1 — cos \w
Reqleo +iy) > /o YN +x0 +N2x3 /(M) + o]

Therefore by the above, (2. 36) and (2.37) we have

dr > q((N2 + 1)x0).

Im A(z)| = Re p(@)|Im q(2)| + [Im p(2)|Re q(2)
> |Im p(2)|Re q(2)

> Cr(@V + 1) q(0) > Ch((N + L)xo). O
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PROOF OF (2.10) IN THEOREM 2.2. The proof is the same as the proof of
(2.9). For s fixed, we define xo by A(2x¢)s? = 1. Then

1 / et h(z)s?

gt 1= 2mi Jr z(1 - h(z)s?) Y

where, as in the proof of (2.9), T' = x’ + iy for some fixed x’ > 2x,. We evaluate
this integral by using the same contour that gives rise to (2.24) (although the
values of xy and x’ are different). Analogously to (2.24), we get a pole at

==(3)
e (i (2)on (i (2)))

Setting s? = 1/h(a), we have

and see that

UAC NPT C))

ili% v(s) = clzlg}) ah'(a) ~ as0 ak'(a) =5
since
im _Ma)___ 1 and lim R _
a—0 2k(a)q(0) ~ a—0 2k/(a)g(0) ~

The integral corresponding to (2.27) is bounded because (2.33)—(2.35) are es-
sentially the analogues of (2.15), (2.17) and (2.18), which is what we used to
bound (2.27). Finally, we note that, by (2.33),

/oo h(y) dy<C 5y dy q(0) < Cr(Nx)g(0) < Ch(Nxo),
Nxo y Nxo y

and since s2h(INxy) < C we can follow all the steps used to get (2.9) to obtain
(2.10) as well. O

COROLLARY 2.5. In the notation of Theorem 2.2 we have that, for all € > 0,
there exists an sg = so(€) > 0 such that, for all s € [0,s¢] and all t greater than
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or equal to zero,

mesp (gt -0

(2.41)
< v(y(s)) exp ((1 +er! (%)t) +0 (exp (n"l (%)t)) ,
EO“”( V2ol )(L’ ))
(2.42)
> v(y(s)) exp ((1 — k1 G)t) +0 (exp (n"l (%)t)) ,
where

1/2
™e) = V20 (x)

and o2(x) is as given in (1.4). The “little o” limit is taken as k= (1/s)t goes
to infinity.

Proor. This follows from (2.4), (2.10) and (2.32). O

LEMMA 2.6. For any symmetric Lévy process, for which the local times ex-
ist, the functions f(s,t) and g(s,t) defined in (2.1) are increasing functions of t.
Furthermore, for all s,t > 0,

(2.43) EYexp (sL)) < Eexp(sL)),

o
(2.44) Evexp(sL)) > 1+ s/ pu(y)dvE exp (sLi;_.).
0
O0<e<]l,

IA

(245)  E?exp [es(Lf - LF)] < 2B exp [es(L? - L)),

and for each x € R and ¢ > 0, sufficiently small, there exists a to = to(e) such that

EY exp [es L - L’t‘)]

(2.46) 20%)

et/2 :
>1+ 5 /0 (p,,(y} +Dy(y — x))dvE® exp [es (Lo — L’t‘(l_e))] ,
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forall s > 0and t > t,.

ProoF. The statement about the monotonicity of f(s,¢) is trivial. Mono-
tonicity is easily verified for g(s,t) by considering the even moments of LY —
L%, which can be expressed as integrals from 0 to ¢ of a nonnegative inte-
grand (see [21] or Remark 2.4 in [17]). Inequalities (2.43)—(2.46) follow from
the equations

t
2.47) B (exp (sL)) = 1+ / Proo(3)f(s,0)dv
0
and
t v
(2.48) E’exp [es(L? - Lf)] =1 +s2/ / he_o(y,%)ky_u8(s,u)dudv,
0 Jo

where
hi—o(y,%) =ps—o(¥) +ps—o(y —x) and ki_, = pr_y(0) — ps_p(x).

These are obtained by inverting the Laplace transforms given in [17,(1.5), (2.11)
and (2.13)]. [In obtaining the inequalities we use the monotonicity of f(s, ¢) and
g(s,t) in ¢t and the fact that p;(0) > p:(y) for all y).] O

REMARK 2.7. Iftyisregularly varying at zero withindex 1 < 38 < 2, thenitis
asymptotic at zero to a monotonic function (see, e.g., [3], Theorem 1.5.3). Hence,
for the purposes of obtaining (1.9), we can assume that ¢ ~! exists. Therefore
we can write

p0) =1 / " e =100
T Jo

and by [3], Theorem 1.7.1, we see that

N r1+1/p)
s

(2.49) p:(0) v~ 1/t) ast— .

Since k()\) is the Laplace transform of p;(0), we get (1.9) from (2.49) and
Theorem 1.7.6 of [3].

The next lemma will be used in the proof of (1.11) and (1.12).
LEMMA 2.8. Assume that 1 is regularly varying at zerowith index 1 < 8 < 2,

and let p; be the corresponding transition probability density function. Then
there exists a to such that, for all t > t,,

, ,
/0 (ps(y — %) — ps(y)) ds| < F(x)logt,

(2.50) sup
yeR
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where F(x) < oo.

Proor. We have

/ / — eMz|e=s¥0) g ds

_1 |1__et)\x| |1_e—t'¢()\)|
B 1r/0 P(N) A

We obtain (2.50) by considering the last integral in (2.51) over the intervals
[0,1/x] and [1/x, co] if fol (A dMN)/9()\) < oo and, if this is infinite, over the inter-
vals [0,%~1(1/8)], [v~1(1/¢),1/x] and [1/x, oo, for ¢ sufficiently large. O

/0 (ps(y — %) — ps(y)) ds| <
(2.51)

LEMMA 2.9. Let X be a symmetric Lévy process for which (1 + y(\)~! €
LY(R"), and let 0%(x) be as defined in (1.4). Define

(2.52) h(x,y) = 0% (y — x) — aX(y).
Then
suph(x,y) = o2(x).
y

Proor. This follows from an interesting inequality for the a-potential of a
symmetric Lévy process which seems to be rediscovered often, namely, that

u®x) +u*(y) <u*(0)+u*(y —x) Vx,y€R.
(See, e.g., [17], Lemma 2.5.) O
3. Proofs of Theorems 1.1 and 1.2. Let

LY

_ £(8)
3.1) £o(t) = loglogt, o) = Lo(t)x ( ) and Y; = ¢(t)

To simplify matters, we will first consider the results pertaining to L.

LEMMA 3.1. Assume that k is regularly varying at zero with index —1/8.
Then, for any y, € > 0, there exists a to such that, for all t > t, and all x,

(3.2) PX(Y; > y) < exp (— (1 — )e( B y?a(t))
where
3.3) «(B)=(B-1)/8".

Moreover, t, can be chosen uniformly in y, for y in any set bounded away from
zero and infinity.
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ProofF. By Theorem 2.2, Chebyshev’s inequality and (2.43), for all s < s,
for some sq sufficiently small and for all w > 0,

(3.4) P*(L) > w) < Cexp (v"!(1/s)t —sw) V¢ e [0,00).

For a > 0, define p,(¢) = x(aly(t)/t). Fix y > 0. Since  is regularly varying at
zero,

(3.5) pa(t) < (1 + %)a‘” B 01(®),

for all ¢ sufficiently large, where ¢ — 0 as ¢ — oo. Set s = 1/p,(¢), where ¢ > £,
and ¢; is chosen large enough so that s < sg, and set w = y¢(t). Substituting
these values for s and w in (3.4) and using (3.5), we see that

P*(L? > w)

IA

Cexp ( — (@ - Oa¥/By - a)Zg(t))

(3.6) ) )
Cexp (— (aPy — a)ta(t) + ea/Pyty(t)).

Setting a = (y/B)?, the value that minimizes a'/Py — a, and using (3.6), we get
(3.2). The final statement in this lemma follows because the estimate in (3.5)
can be made uniformly for @ in an interval bounded away from zero and infinity
if ¢ is taken to be sufficiently large. O

In the next lemma we will obtain a lower bound for the probability distri-
bution of Y;, but only in the narrow region needed to obtain the lower bound

in (1.11).

LEMMA 3.2. Assume that k is regularly varying at zero with index —1/8,
and let

outpv(x) dv
k(L@®)/t)

Then for all t sufficiently large we can find a vy > 0 such that, forall 0 < v < vy,

3.7 a,(x,t) =

P*(¥e > (1-mw)e(B) )

(3.8)
> C(a,,(x, t)exp [ — £5(t)] — exp [ — (1 +me(1))£o(?)] ) ,

where n;(v) > 0 and lim,_,o n;(v) =0, i =1,2.

. Proor. Following Davies (8] and using the fact that Y; is continuous in ¢,



LIL FOR LOCAL TIMES 643

we see that, foranyu, t >0, 0<§ <1and 0 <w <y, we have

"y
PHY; > w) > / dP*(Y, < 2)
w

IV

_(1—6)uy /y (l—6)uzdPx(Y <z)

([ e arnso)

> e —(1- ﬁ)uyEx e(l 6)uY,) —e uyEx(euYt)

(3.9

_e_(1—5)uy/ e1=9uz gpx(Y, < 2)
0
Jl — J2 — J3.

By (2.44) and Theorem 2.2 we see that, for all 0 < v < 1 and all ¢ suffi-

ciently large,
C(1-96)u vt
Ji 5D (/0 polx) dv)

1 RVA) _
xexp( 1-0uy+k ((1—6)u)(1 v)t).

Let u = bly(t), where b = (y/B)’~1, and let v = §% Then, taking into ac-
count the regular variation of x and hence of k=1 at zero, we see that, for all §
sufficiently small,

(1-8uy — k1 (—¢(-t—)—)(1 — vt

1-%8u
= (1 - 6ybly(t) — K1 (%)(1 e

v

(3.10)

(3.11) %
gu+ﬁ(u—ayb-u-@wmygﬂ
<yP (ﬁ) (1+83)((1 - 6B — (1 - 8)°)65(®) = vy £a(2),
where A
1\° _ =
vw)=<=)(1+5%@1—6m—41—5w)
(3.12) p

c(ﬁ)(l By, 0(53))
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We now sety = v~1/8(§) and see that, for all 0 < v < 1 and all ¢ sufficiently large,
(3.13) J1 > Ca,(x,t)e2®,

By Theorem 2.2 and (2.43) we see that

(3.14) J < exp(—uy)E° (exp(uYy)) < C exp( - (uy — k1 (ggz)t)) .

Substituting for u and b and taking into account the regular variation of « at
zero, as we did in dealing with /1, we see that, for all e > 0,

J5 < € exp( — (1 - e (B)y 4a(1)
(3.15)

_ c(B)
=C exp( —(1-%¢) ) Zz(t)),

for all ¢ sufficiently large. Taking 6% = € for 6 as given in the beginning of this
proof and substituting for v(5), we get

1-6°
Jy<C exp< - (1 ~(7/2)5+ 00 )Zz(t))

352
<C exp< - <1+ —B—j——)eg(t))

since we can take ¢ and hence § as small as we like.
We now obtain an upper bound for J3. Let v > 0. By integration by parts we
see that

(3.16)

J3 < exp[— (1 - 8uy] (exp (1 - 6)un]

+ /w exp [(1 — 8)uz] dP*(Y; < z))
vy

8.17)
< 2exp[—(1 - &uly —9)]

+u(l—6)exp [ — (1 - Suy] /w exp [(1 — 8)uz] P*(Y; > z) dz.

y

Substituting for z and y and using the last line of (3.12), we see that

(1 — 8)Bla(2) )

(B) e(B) (1 - (Bs)/2+0(¢?))
(1 - 6)8e5()

(1-(Ber)/2+0(5%)) )

exp( — (1 —8uy) = exb’ (—
(3.18)

=exp| —
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Clearly, for all § sufficiently small we can find a v > 0, independent of 6,
such that

exp( — (1 - 8uy) < exp( - (1 + ﬂ; 122(73)))

exp(1l — 8uy < eXP<(ﬁ ; l)fz(t)).

Thus for all § sufficiently small we can find a ¥ > 0, independent of §, such that,
for some 1 > 0,
(3.19) 2exp [~ (1 - &uly —7)] <exp [ (1+2n)()].
Next let us consider the integrand in (3.17). By Lemma 3.1,
exp [(1 — 8)uz]P*(Y; > 2)
(8.20) _
< exp (1 - 6)uz — (1- 6°)c(B)2°6:(8)) = R(@),

for any § > 0 and z in a compact set bounded away from zero as long as ¢ is
sufficiently large. We have already chosen . We will take w = (1 — ¢é)y. Note
that R(z) is increasing for z < zy, where z; is determined by

(1-6)u = (1-6%)820"c(B) (2.

Substituting for z and c() this is

1-6 [y A-1 _ (=0 A-1
Writing zo = (1 — d6)y, (3.21) becomes
- 2
(3.22) 22 o1 -nas+ - v8-2LE o).

When 3 = 2, (8.22) is satisfied for d = 1+0(62). Thus for ¢ = 2, R(z) is increasing
for z < w. Before considering the cases 1 < 8 < 2 let us note that, in general, if
R(z) is increasing for z < w, then by Lemma 3.1,

u(l—6)exp [ — (1 — S)uy] /w exp [(1 — 8)uz] PX(Y; > 2) dz

~
< uw — y)exp [ — (1 — 8)uy| Rw)

< exp(— (1 =)ty + (1 —6%)e(B)(1 - cé)ﬂyﬂﬂg(t)))

yﬂe2(t)) .
(3"

- exp(— (1= )68 + (1 - 6%) (B - 1)(1 — c8)")
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In general we will choose ¢ depending on £ such that

(3.23) (1 - 8)céB + (1 - 6%)(B — 1)(1 — c6)°) (—%[;7,- > (1+2n),

for some 7 > 0 (which clearly goes to zero as § goes to zero), and this aﬁd 3.19)

will show that

(3.24) J3 < exp [ — (1+nk@)],

for some 7 > 0 for all ¢ sufficiently large. Clearly, (3.23) holds if

3.25) (1-8)csB+(1—8)(B-1)1-c8) >(1-6B—(1-6P.

Returning to the case 8 = 2 (in which case ¢ = 2), (3.25) is simply
(1—6)46+(1—6%)(1 - 262 > 162

Thus (3.24) holds when g = 2.

Now let us consider (3.21) when 1 < 3 < 2. It is easy to see that (3.22) is
satisfied for some d for which 1-§ < 1—(3—1)dé, thatis, for somed < 1/(5—1).
Take ¢ = (1 — p)/(8 — 1), where p > 0 is small enough so that ¢ > d. For this
choice of ¢, R(2) is increasing for z < w. Thus we can obtain (3.24) if we can
verify (3.25). The left-hand side of (3.25) can be expanded as

(1-8)c6B+1—6(B~-1)1A —cb)’
=(B-1)+ ﬁ(ﬂ )( 1+p%)6% +0(6°),
whereas, as in (3.12), the right-hand side of (3.25) is

(B-1) - E(Z—_lzﬁ +0(8%).

Thus (3.25) does hold. Combining (3.9), (3.13), (3.16) and (3.24), substituting
for y and making & smaller if necessary, we get (3.8). This completes the proof
of Lemma 3.2. O

PRroOOF oOF (1.11) IN THEOREM 1.1. By (1.9), « is regularly varying at zero.
Let .

(3.26) d(ﬁ) = (c(ﬁ))—l/ﬂ _ ,Bl/ﬂﬁl/-ﬁ.

In Lemma 3.1 let y# = (1 + 3¢Xd(B))? and tn = 0", where € > 0 and § > 1. This
gives us

Y, <1 +3ed(B),
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for all n sufficiently large almost surely. Also note that, by the regular variation
of k,

(3.27) lim 9(tns1) =gV/8,

n—oo ¢(tn
Therefore, since L? is monotone in ¢ and since ¢ can be taken to be arbitrarily
small and 6 can be taken arbitrarily close to 1, we get

(3.28) hm nsup s <d(B) as.

¢()"

the desired upper bound in (1.11). To obtain the lower bound needed in (1.11),
set

(3.29) H,=L) -L) ..

We show that, for any € < 0,

(3.30) lim sup —2~ H, >(1-ed(B) as.
noca B(tn)

which implies that, for all € < 0,

liﬂi‘:pqz&( ™ >(1-ed(B) as,

and this along with (3.28) will complete the proof of (1.11).
We proceed to obtain (3.30). Set s, = ¢, — ¢,_; and note that H, =L? o6, ,.
By the Markov property we have that
‘ﬁn—l)

Zpo(fb(tn) 2 (1~ ad(p)

_ZPX:,, 1( (:n) >(1- e)d(ﬁ)),

where F;, is the sigma field generated by {X(¢), 0 < ¢ < ¢,} and 6. is the shift
operator. We will show that the sums in (3.31) are infinite almost surely, and
this will give us (3.30) by Lévy’s version of the Borel-Cantelli lemma (see, e.g.,
[4], Corollary 5.29). Since s, = (1 — 1/0)¢,, taking 6 sufficiently large, we see
that the divergence of the sums in (3.31) follows if we show that

0
(3.32) ZPX‘" l(qsI(Js ) = —e)d(B)) = as,

n=1
for all € > 0. Now we see by Lemma 3.2 that (3.32) holds if

(3.31)

(3.33) > a, Xiprs) =00 as,
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for all v sufficiently small. So, finally, to complete the proof of (1.11), we obtain
(3.33). We first show that

(3.34) E° ( gay (th_l,sn)%> = 00.

Note that

_Jorp(X ) dv " po(Xe, ) dv
)

for all n sufficiently large, because « is monotonically decreasing. Since x(-)
is the Laplace transform of p (0) it follows from [3, Theorem 1.7.6] that p, is
regularly varying at infinity with index —1/3 and that

(3.36) n(si) ~ Cspp;,(0) asn — oo,

n

where we use the notation f(x) ~ g(x) as x — oo to mean lim,_,,, f(x)/g(x) =1
and similarly when x — 0. We note that

th_1+VUSy

1z vsy
3.37) B / poX ) dv = / Post, ,(0)dv = / 2u(0) dv.
0 0

th—1
Therefore, using this, the regular variation of p, and (3.36), we have
E° (;/s,, X, ) dv N C(tn_l + USp)Dt, _14+vs,(0) — tn_1ps, ,(0)
1+uo-1)"" -1
(6 -1)V/B

Using (8.35), (3.37) and (3.38), we obtain (3.34).
Note that, by (3.36) and the obvious fact that p,(x) < p¥(0) for all x,

(3.38)
>0 as n — oo.

0"s"pu(Xt,._1) dv <C ousnpv(o) dv
%(1/sn) - k(1/sn)

Therefore, for m > n for ny sufficiently large, we have

2 2
m ) " 1/s)
(3.40) E° ( > av(Xt»—vs")Z> > C( 2 W) ’

n=ng : n=ngy

~ CUY/B as n — oo.

(3.39)

and as we have already seen

m 1 . , " (1/sn)
(3.41) E° ( > a,(th_l,sn);) =€ (Z E&(%ES)

n=ngy n=ngy
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Hence

EO( Zm au(}(tn_l,sn)(l/n))2

n=ngm

(3.42)
(EO( Er?:no aV(Xt,,_l s sn)(]-/n)))

5 <C<oo, Ym2n,.

Thus by the Paley-Zygmund lemma (see, e.g., [14], inequality 2, page 8) the
left-hand side of (3.33) is infinite with probability greater than zero. We now
show that this probability is 1 by showing that the divergence of the left-hand
side of (3.33) is a tail event. Fix r and let ny = inf{n:¢,_; > r}. Then

) 1 o0 1
Z au(Xt,,_lasn)'_l = Za”(Xtﬂ—l _Xrasn);

(3.43) n=ng n=n%o ‘ 1
+ Z (au (Xt,,_l s sn) —Qy (th_l - X, sn)) ,_l
n=ng

The first sum to the right of the equality sign in (3.43) is independent of 7, and
the second sum to the right of the equality sign in (3.43) is finite. This latter
fact follows from Lemma 2.8, which gives us
F(X,)log vs,
% (€2(sn)/sn)
< CFX,)(67/%)" 1ogn,
where F(X;) is finite almost surely. This shows that the divergence of the left-

hand side of (3.33) is a tail event and hence we obtain (3.33), which completes
the proof of (1.11). O

all(th_lvsn) _aI/(th_l _Xrysn) S

The proof of (1.12) of Theorem 1.1 is essentially the same as the proof of
(1.11). However, there are a couple of places where the fact that LY — L¢¥ is
not monotonic in ¢ must be taken into consideration. We begin by noting the
counterparts of Lemmas 3.1 and 3.2 for the difference of the local times. Let

0 X
= 0ot 1/2(32_“)) d Z;= ﬂ‘
p(t) = Lo(t)k ; ané 4 eﬁa(x)p(t)

LEMMA 3.3. Assume that k is regularly varying at zero with index —1/B.
Then, for any y, € > 0, there exists a ty such that, for all t > to, and all v,

(3.44) P°(Z; > y) < exp( — (1 - e)e(@y*£@))
wherea =206, 1/a+1/a=1and
(3.45) o@=21,

(0%

Moreover, ty can be chosen uniformly in y for y on any set bounded away from
zero and infinity.



650 M. B. MARCUS AND J. ROSEN
Proor. We use Corollary 2.5 and follow the proof of Lemma 3.1. O

LEMMA 3.4. Assume that k is regularly varying at zero with index —1/8.
Then for all t sufficiently large we can find a vy > 0 such that, forall 0 < v < vy,

P*(Z, 2 (1= m@)e@ /)

(3.46)
> C(ay (s, exp [ - £(®)] - exp [ - (1+m0)60)),
where a,, 5(s,t) is given in (3.7), n;(v) > 0 and lim, o n;(v) =0, i = 1,2.

ProOF. The proof of Lemma 3.2 goes through with only minor modifica-
tions. It is clear that we want to obtain the inequality in (3.8) with Y; replaced
by Z;, 8 by @ and v by v/2. In obtaining the lower bound for J; in (3.10) we
used the inequality

E¢ ( exp [(1 - 6)uYt])

_ vt
> %@fﬂ(/o pu(s) dv) exp (n‘l (ﬁ%ﬂ)(l — u)t) .

Using (2.42) and (2.46), we see that

3.47)

E¢(exp [(1 - 6)uzs])

_ £2,,2 tv/2 2
> ﬂl_pz_((tg))_u‘(/o Pv(S) dv) exp ((1 — E)K,_l ((]._fét;?)(l — U)t),

where ¢ can be made arbitrarily small for ¢ sufficiently large. Making the sub-
stitution u = b4y(t) as in the proof of Lemma 3.2, this is

E* (exp [(1 — 6)uzi])

-1 tv /2
o (5] [ )

> Caya(s,t)exp (1 - 6)(1 - 6)PuPey(0))

Thus in evaluating the lower bound for the term corresponding to </; in this
lemma we are led to the same calculation as in (3.11) except that G is replaced by
@ and, naturally, 8 by o. Note that since § is arbitrary in the proof of Lemma 3.2
and since @ > 3, the calculations needed have already been done. Thus we see
that paralleling (3.13) the term corresponding to «J; is greater than or equal
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to Ca, /2(s,t)e~%®. The bounds for the terms corresponding to J; and J3 are
obtained similarly. O

PRrOOF OF (1.12) IN THEOREM 1.1. Following the proof of (1.11), we see that,
fort,=6" 6>1, 4
(3.48) Z;, < (1+€0)d@),

for all n = n(e(8)) sufficiently large, almost surely. Furthermore ¢(6) can be taken
to be arbitrarily small. In order to interpolate between the {¢,}, since Z; is not
monotonic in ¢, we introduce the martingale

M, = L? - L} + 0%(X(t) — x) — 0*(X®)) = L) — L} + h(x, X))
with respect to 7;, 0 < ¢ < co. [Note that A(:) is defined in (2.52).] Consider
Mz; = Ssup lMt — Mtn—ll'

th—1<t<tp

By Lemma 2.9 and Doob’s inequality for £ > 2 and even (see, e.g., [20], Chapter
2, 1.7), along with the Markov property, we have

k

B < ( - 1) B(M, - M, )"

k
<ap(|@d -8 ) - @ - It )|+ ')
< 4E0EX(tu—1)(| L0 - L% |+ gz(x))k

< 4K ((|L3n ~LE |+ 02(x)))k,
where, as above, s, = ¢, — ¢,_1. It follows that
Eexp (sM;) < 4 exp (so*(x))E® exp (es Ld - L% ))
and so, for s € [0, s¢] for s sufficiently small,
(3.49) Eexp (sM;,) < CEexp (=s(LS, ~ L%,) ).

Using the same argument as in the proof of Lemma 3.3, we see that (3.49)
implies that

. M, M p(sn) p(sn)
lim Sup 2 = B SIP 2y o) = © TSP )
By taking 6 > 1 arbitrarily close to 1 we get
(3.50) hirl)scgp p(tn) =0 as.

Combining (3.48) with (3.50) we get the desired upper bound in (1.12) and the
statement following (1.12).
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The lower bound in (1.12) follows immediately from the corresponding result
in the proof of (1.11). Analogously to (3.29), let
Hy = (L} - L) - (Lh_, - Li._,).

th—1

We show that, for any ¢ > 0,

H,
(8.51) lim sup >(1-ed@ a.s.
nosoo V20(x)p(ty)
Following the proof of (1.11), with obvious modifications, we see that (3.51)
holds if

X

0 —LE
. P 1-ed@ | = s.
(3.52) Z ( \/_a(x)p(sn) > ( e)d(a)) 0o as.,

for all e > 0, where Sp = tp — t,—1. Now we see that by Lemma 3.4, that (3.52)
holds if

S 1
Za”/2(th—1asn); =00 a.s.,

for all v sufficiently small. We showed this in the proof of Lemma 3.2. Hence
we obtain (3.51), which gives us the lower bound in (1.12). O

PRrROOF OF THEOREM 1.2. The proofis almost exactly the same as the proof
of Theorem 1.1. This is because the discrete Laplace transforms for the local
times of symmetric random walks are the same as those given on the right-hand
sides of (2.5) and (2.6) except that « is as defined for random walks in (1.16)
and (1.19). (See [17], Lemma 4.1.) Moreover, the functions () defined in (1.5)
for Lévy processes and in (1.16) and (1.19) for symmetric random walks are
asymptotically equivalent as a goes to zero. This implies that Theorem 2.2 and
Corollary 2.5 also hold for the local times of symmetric random walks and this
is all we need to extend the proof of Theorem 1.1 to this case. There is only one
place where the procedure differs. When we invert the Laplace transform we
use a rectangular contour with horizontal sides given by y = 7 and y = —. This
is possible because ¢()), given in (1.17), is periodic. This makes the inversion a
little easier and also enables us to dispense with condition (1.7). O

4. Proofs of Theorems 1.3-1.5. In this section we give the proofs of the

two theorems on the functional law of the iterated logarithm and the corollary
dealing with the return times to zero of a symmetric random walk.

'PROOF OF THEOREM 1.3. Fix k, and let {r;}%,, r; > 0, be such that ©% ;r
=1, that is, {r;}%, is in the unit sphere of R equipped with the £5 norm. Set

4.1) Q:=—= Z"z L L(z )
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where ¢(¢) is given in (3.1). Let A = 8b#~14,(t), where b > 0, and set @ = 8651,
Then using the Markov property and (2.43) we get that, for any € > 0,
PYQ; > b) < exp(—\b)E® exp(\Q;)

<e (—)\b)ﬁ:E0 ex (—)‘ﬂ>
4.2) = expmAv)) P\3 (B¢

i=1

< Ckexp [ — ably(t)] exp ( i k1 (M) t)

ar;
i=1 4

where, at the last step, we used (2.32). Using the regular variation of « at zero
we see that this last term is less than or equal to

i=1
=Ck exp( — (ab - aﬁfy(ﬁ) s _ O(e))fz(t))
=Ck exp( —-1- e')bﬂfz(t)),

for some ¢’ > 0 which goes to zero as ¢ goes to zero. Take b = 1 + ¢ and ¢, = 67,
for # > 1, and note that % is fixed so C* is only a constant. It follows from (4.2)

and (4.3) that

E\ _
C* exp [ — ably(t)] exp ((1 +¢€) ( Z r? ) a®~(B) ‘%(t))

(4.3)

k
4.4) lim sup qb(t )Z L), —-LY_1) <1 as.

th—00 ")’ 1
Note that, for ¢,_; < ¢ < t,, we have
0 0
L L(z 1)t < L L — Dty

(L?t,, L?i—l)tn) + (L?i—l)t,. _Lg—l)tn_l)'

Using our original proof for the upper bound in (1.11), it is easy to see that, for
any 1 <i <k,

0 _ 70
L(i—l)t,, L(i—l)tn—l <C as

o S et
and since
. ¢(tn - tn—l)
limsup == 5

can be made arbitrarily small for 6 sufficiently close to 1, we see that (4.4)
implies that

(4.5) lim sup ———

1 i
t—o0 ’Y(E)fﬁ(t) Zri(L?t _Lg—l)t) <1 as.
-1
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To show that (4.5) holds with an equality sign we first show that

k
B exp ( S Al - L?,-_n»)
i=1

(4.6) ot

vt o)t k '
> ( / prx) dr) ( / p-0) dr) 11 (AiE" exp (AiL?l_V»))-
0 t

i=1
To prove (4.6) we note that by (2.44) and the Markov property we have

k
E* exp ( Z (LY - L?i—l)t))

i=1

E—1
- (exp(zx (08 - 18 ) ) exp (i)
vt
(exp Z )\ th L(l 1)t)> /0 Pr (X(k—l)t) dr) /\kEo exp (/\kL?)
(exp Z)\ L) L(; 1)t)>

vt
x EXt—ox (exp (/\k—lL?) / pr(Xy) dr) ) )\kEO exp ()\kL?),
0

where we write X; instead of X(¢). Using this, the proof of (4.6) is completed
inductively with the help of the following inequality:

vt
E* (eM? / p,(Xt)dr>
0
vt (1+v)t o
> / pr(x)dr( / ps(0) ds)AE"(e"Lt).
0 t

To obtain (4.7),let 0 = sg < s; < --- < s, = ¢ be a partition of the interval [0, ¢].
Using (2.44), the Markov property and fact that dL? is supported on {s | X; = 0},
we have
vt
B (exp 0L9) [ pr(x) dr>
0

n

ZE(ZI xp (AL) — exp (ALY, ) /Ow‘p,(xt) dr)
_ZEx((exp )\Lo ) —exp (ALY _ l))EX*'i(/owp,(Xt_si) dr))
((

n (1+v)t—s;
exp (MLO) — exp(ALS_ D) /t pr(Xs,) dr).

= ZE"
—s

(4.7

4.8)
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Note that X is cadlag and therefore so is ft(_lzy)t_s pr(X;)dr. Also p,(0) is decreas-
ing in r. Therefore, taking the limit as n goes to infinity in (4.8), we get

vt t (1+v)t—s
E* (e'\l’? / pr(}(t)dr> Z E* ( / de)‘Lg / pr(Xs)dr)
0 0 t—s

0 (1+v)t
> E*(eMr — 1) / pA0)dr.
¢

Using (2.44) again establishes (4.7) and hence (4.6).

Using (4.6) we can get the critical step for showing that 1 is also a lower
bound for the left-hand side of (4.5). Recall that is obtaining the lower bound
in (1.11) the key point is Lemma 3.2. The critical inequality used to obtain
the lower bound was in the computation of JJ;, where in (3.9)-(3.11) we used
the inequality

E* exp ((1 - 6)bL?)
“9 0:1@2(21{ y y
= v 1-651-56 X3 )
Z G ( /0 Pu®) dv) exp((1 — 8°)1 — 6)°bP1y(2)
By (4.6) we have
SY(CEY.TS  NUTL- B B
i exP( k(£a(2)/t)
b1 — &) Ik
(4.10) = ( fc(fz(t))/t) . (/0 Po(x) dv)
k
- _1[ sa(®)/t)
x DF1 (exp(hzlfc 1(_(12__6)6 )(1 - I/)t)) ,
where
D - j;(lw)tpv(o) dv
p = T
K (La(t)/t)

As in (3.11) set v = §* By calculations almost exactly like those used in
(3.35)—(3.38) we see that lim inf;_, ., D; > 0. Making use of the regular variation
of k at zero as we did in (3.11), we see that the left-hand side of (4.10) is greater
than or equal to

_C ([ _ 89Y(1— 6P
I‘C,(Zz(t)/t) (A Pv(x)dv) exp((l 6 )(1 5Pb eg(t)),

the same as in (4.9). Thus we can proceed to get an analogue of Lemma 3.2 for
this case. Given this analogue of Lemma 3.2, the rest of the proof to show that
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1 is also a lower bound for the left-hand side of (4.5) is exactly as the proof of
the lower bound in (1.11).

Theorem 1.3 follows easily now that we have shown that (4.5) holds with an
equal sign. Since equality also holds for a countable dense set of Rk satlsfymg

Ef_lr = 1, we see that the set of limit points of

(4.11) V# = L LS, —-L?,... LY —LY_
t (,3)¢(t)( t t kt (k l)t)
is contained in the unit ball of £5(R*) and moreover contains the unit sphere
in £3(R*). Repeating the same argument for V**1 shows that the set of limit
points for V(¥ is the unit ball in £3(R%).
Replace ¢ by ¢/k in (4.11). Using the regular variation of ¢(z) at infinity we
now see that the set of limit points of
BB
(4.12) ———(LY,,LS,,, — LY,,...,LY — LY
~+(B) ¢(t)( t/kr L2t/ — Lty (k— l)t/k)

is the unit ball in £5(R*).
We can reexpress this as follows: Recalling (1.21) and (3.1) let us define, for
0<x<1,

w9 i G (o ple(5) 1) fee

It follows from (4.12) that, for each k, {Lﬁk)(~), 1 <t < oo} is relatively compact
in C(0, 1) and the set of its limit points coincides with the set of f € C(0, 1),
such that

. ; +1
(4.14) fx)=a; + (x — %)k(aiu —-a;), l; <x < T’
with (a,- — ai_l) Z 0 and

k
(4.15) mzl (k(ai — ai—l))ﬂ% <1
For functions of the form of (4.14), the condition (4.15) is precisely the condition
that f € By.
Let Bf{, , be the functions in By of the form (4.14). It is clear that the increas-
ing union Usz?l,k is dense in Bfl in the topology on C(0, 1). Thus, to complete
the proof of Theorem 1, we need only to verify that

(4.16) limsup L) - LP (O]l < 2/EYP  ass.,
t—o0
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and this will follow once we show that

(4.17) lim sup |L;(x) — L(y)| < 2/EY? as.,
t—o00

for all x and y such that |x — y| < 1/k. Finally, to get (4.17) we use the mono-
tonicity of L;(x) and the fact that '

w(§) 47

—— as.,
= BB

lim sup

t—oo

which itself follows from (1.11). This completes the proof of Theorem 1.3. O
PrOOF OF THEOREM 1.4. Theorem 1.4 has the same proofas Theorem 1.3. O

ProoF oF THEOREM 1.5. We first note that by Theorem 1.4 we have that,
for any positive function G of bounded variation,

n—oo n—oo

1 1
lim sup / G(x) dL,(x) = lim sup (Ln(l)G(l) - / L,(x) dG(x))
0 0

1
(4.18) = sup (f(l)G(l)— / fx) dG(x))
0

feBy
1
= sup / F@)GG) dx = |Gl
feBs Jo
By (1.23) we have that
L9~ 10 _
n(Ly k—l)dx, k 1Sx<

7(B8)¢n) n

S|

dL,(x) =

Hence, we see that

1 1 n
4.19 Gx)dL,(x) = ———
(4.19) /0 () dLn(x) W(ﬁ)¢<n>kz=;<n

Let G(x) = 29, for ¢ > 0, and note that
n/k/n xldx = —— (E>q+l (1 - (1 — l>q+l>
(k—=1)/n qg+1\n -k
q
Ofe(t)
Therefore, since Lg — L2—1 = 69(Xy), we can take the limit superior as n goes

to infinity of both sides of (4.19), with G(x) = x4, and use (4.18) and (4.20) to
get (1.24). O

k/n
/ Gx) dx) L8 -1 ,).
(k=1)/n

(4.20)
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