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1 Introduction

Let X = {X(¢),t € R*} be a symmetric real-valued Lévy process with

characteristic function
(1.1) EeiAX(t) —_ e—t‘l/l()‘)

and Lévy exponent
(1.2) P(A) = 2/ (1 = cosul) dv(u)
0

for v a Lévy measure, i.e. f0°°(1 Au?) dv(u) < co. We also include the case
¥(X) = A2/2 which gives us standard Brownian motion.

In [4] we used the Dynkin Isomorphism Theorem to study the almost
sure variation in the spatial variable of the local time of the symmetric
stable processes of index 1 < § < 2, i.e. ¥()) = ¢|A|?. In this note we will
show how the proofs in [4] can be modified so as to generalize the almost
sure variation results obtained there to a large class of symmetric Lévy
processes with Lévy exponent psi regularly varying at infinity of order
l1<p<2.

Such Lévy processes X have an almost surely jointly continuous local
time which we denote by L = {L?,(t,z) € R* x R}, and normalize by

requiring that
E° (/ e~? de) = ul(z)
0

where - \
1.y 1 cos
v@=2 [
is the 1-potential density for X. We set
1 [®1—cosz
1.3 2(z) = —/ —dA.
(1.3) o*(z) = — T

It follows from Pitman [6] that if ¥(}) is regularly varying at infinity of
order 1 < 8 < 2, then 0?(z) is regularly varying at zero of order #—1, and
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we have

. a*(z)~¢ asz—0
(1.4) o) ~ p—~ ¢( ;
with cg depending only on 8. Throughout this paper we use the notation
f ~ g to mean that lim f/g = 1.

Let # = {0 = 29 < z1 - - < 2§, = a} denote a partition of [0, a], and let
m(T) = sup;¢;<k, (Ti — zi—1) denote the length of the largest interval in =.
m(r) is called the mesh of 7. Let Q4(68) = {partitions 7 of [0, a] | m(w) < 6}.

To clarify the notation in all that follows we note that in the expression
ine,r f(@i-1, %), for some function f, we mean that the sum is taken over
all the terms in which both z;_; and z; are contained in «.

Theorem 1 Let X = {X(t),t € R*} be a real valued symmetric Lévy
process with o2(z) concave on [0,6] and regularly varying at zero of order
B—1 where1 < <2, and let {L7,(t,z) € RT x R} be the local time of
X.

i) Let ®(z) denote any function which is an inverse for o(z) near z = 0.
(Thus, ®(x) is regularly varying at zero of order 2/(8 — 1)). If {m(n)} is
any sequence of partitions of [0,a] such that m(n(n)) = o(®(y/1/logn))
then .

: Ti _ pTi-1yy zi1/(B-1)
(a5)  Jim S e(rp - i) =) [ 1BV

zi€x(n)

for almost all t € RY almost surely, where

ooy 1 . 1/(6-1)
(1.6) c(B) = 7 r (ﬁ_ Tt ) (I‘(ﬂ)sm( (8- 1)))

it) Let T(z) denote any function which is an inverse for
o(z)\/2loglog1/x near zero. (Thus, Y(z) is regularly varying at zero of
order 2/(B—1)). Then

(17)  lim sup S T(LE - Lf-‘-lpzc'(g)/ L2 [/ =D 4
0

6—0 T€Qa(8) 4, JEW

almost surely for each t € RY, where

o 1 1/(p-1)
(1.8) c(B) = (I‘(ﬂ) sin(%(8 — 1))>

+  To prove Theorem 1 we use a corollary of the Dynkin Isomorphism
Theorem, Lemma 4.3 of [5], which enables us to obtain almost sure results
for variations of the local times of symmetric Lévy processes from analogous
results about the variation of their associated Gaussian processes. The
mean zero Gaussian process {G(z),z € R} with covariance g(z,y) is said
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to be associated with the Markov process X if g(z,y) = ul(z,y), the 1-
potential density of X.

In particular, part ii) of Theorem 1 follows immediately by applying the
methods of [4] to the results on Gaussian processes of Kawada and Kono [2].
Part i) of Theorem 1 follows from the next theorem on Gaussian processes
in the same way that Theorem 1.1 followed from Theorem 1.2 in [4].

Theorem 2 Let {G(z),z € R} be a mean zero Gaussian process with
stationary increments, such that

(1.9) o*(z) = E(G(z) — G(0))*.

is concave and reqularly varying at £ = 0 of order B — 1 where 1<p <2
Let ®(z) denote any function which is an inverse for o(z) near T = 0.
(Thus, ®(z) is reqularly varying at zero of order 2/(8 — 1)). If {m(n)} s
any sequence of partitions of [0,a] such that m(w(n)) = o(®( 1/logn))
then

(1.10) lim > <1>(|G(z.~)—G(x,-_1)|):E|n|2/<f’-1> a.s.

z;€x(n)

where 7 is a normal random variable with mean 0 and variance 1. Also,

(1.11) lim &(|G*(z:) — G*(zi-1)))
z;€n(n)

= E|,’|2/(ﬁ—1)22/(ﬁ—1)/0 |G(:c)|2/(”'1)dz

almost surely.

As in [4] the almost sure result of Theorem 1 part i) will lead to the
following L™ convergence of the variation. Note that in Theorem 3 we do
not require any conditions on the rate of convergence of m(m(n)) to zero.
In addition, our results hold for all .

Theorem 3 Let X = {X(t),t € Rt} be a real valued symmetric Lévy
process with o*(z) concave on [0,8] and regularly varying at zero of order
B—1 where1 < B <2, and let {L?,(t,z) € R* x R} be the local time of
X.

Let ®(z) denote any function which is an inverse for o(z) near z = 0.
(Thus, ®(z) is reqularly varying at zero of order 2/(8 — D). If {x(n)} is
any sequence of partitions of [0, a] with im0 m(n(n)) =0 then

(1L12)  lim - <I>(|Lf‘—Lf"‘|):c(ﬁ)/ L2 B de
z;€x(n) 0

in L™ uniformly in t on any bounded interval of RY, for all v > 0, where
c(B) is given in (1.6).
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In Section 2 we give the proof of Theorem 2, and in Section 3 we give
the proof of Theorem 3. In Section 4 we provide a large class of examples of
Lévy processes satisfying the assumptions of our Theorem 1. In particular,
we show in Corollary 1 that if h(z) is any function which is regularly varying
and increasing as £ — 00, and if 1 < 8 < 2, then we can find a Lévy process
with o%(z) concave such that ¢%(z) ~ |z|~1h(In1/z) as z — 0.

2 Almost Sure Variation of Gaussian Processes

In this section we prove Theorem 2 which gives almost sure variation results
for a wide class of Gaussian processes. The basic ideas are already contained
in the proof of Theorem 1.2 of [4]. The main point of this section is to show
how t hat proof can be adapted to the Orlicz space setting.

Proof of Theorem 2: Set p = 2/(8 — 1). It will suffice to prove the
theorem for ®(z) chosen to be a polynomially bounded Young’s function
regularly varying at zero of order p > 2. We first show that

(2.1) lim E ( Y #(G.. —G,_._l)) = E(|ZP)a.

z;€x(n)

Ge;=Gs_, 4

where 7 is a standard Gaussian random variable. Let Z; = i) &

N(0,1) and write

22) E ( S %G, - G,‘,_l)) .y ( /0 " Falw,2) da:)

ri€x(n)

where

#(Go;-Gay_,)
Fy(w,z) =3; — e Y, (T)

(2:3) DI e PRI )
and Az; = z; — z;-1. We begin by showing that
(2.4) IFall3 < ¢

uniformly in L2(Q x [0, a], P x dz). This inequality, (2.4), will be used later
on, in (2.24), and the method used to prove it will lead to (2.1).
To prove (2.4) we first note that

0 x; 2
25) Fi=Y (%(Z;(Lﬁi_)))l) Lo 1 (®)-
If | Z;| € 1, then by monotonicity

CI)(Z,'O'(A:L‘,')) <1.

(26) 2o(Be) =
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If | Z;| > 1 is such that for suitable § > 0 we have |Z;|o(Az;) < 6, then

‘I)(Z;O’(Az,'))

ZN\Ty AT c ip+€
3oz < 1%

(2.7)
by the regular variation of ®. See e.g. [1], Theorem 1.5.6 (iii). Finally, if
|Zi|o(Az;) > 6, we can use the assumption that ® is polynomially bounded
to see that for somecand k > p+1

Q(Z,'O‘(AZ’,’)) a"(Az’;)
awon) < VU ae@a)
(2'8) < C|Z,'Ik.
Using (2.6)-(2.8) in (2.5) we see that
(29) F2<e) (14120 1y 2a(2)

and (2.4) follows, since Z; 4 N(0,1).
We get (2.1) from the same reasoning: Note that we can write

(2.10) E( ) <I>(G,,.—G,,,._l)) =E(/oa[7‘,,(w,x)d:c)

z€x(n)

where now
~ <I>(Za’(A:c,))
(2-11) Fo(w,z) E 3o (6) (zios,0a(2)-

i.e. we replace Z; by Z. As before, in the proof of (2.4), we find that F,is
uniformly bounded in L? | hence uniformly integrable. But by the regular
variation of ® we have

lim F,(w,z) = |Z(w) a.s.
11— 00

Therefore we see that (2.1) follows from (2.10).

With these preliminaries out of the way, the proof of Theorem 2 will
proceed analogously to the proof of Theorem 1.2 in [4]. Instead of I, we
will use the Orlicz space lsz. Let f,g be sequences of real numbers, f =
{f:},9 = {g:},i = 1,2,...,00. Recall the definition of the Luxembourg
norm:

(2.12) 1fll = inffe : Z@( £)<n

and note that

(2.13) Ifll@y= sup Z 9

{g:llgllesy <1
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see [3], (14.10). In the last equation, ®* is the dual Young’s function, and
llglls- is the ‘standard’ norm which satisfies

(2.14) lollse <1 = Z *(g:) < 1,

see e.g. [3], Lemma 9.2.
We use the notation AG(r) to denote the sequence {G,, — Gy,_,, i =

L,2,...,kx}, and for any sequence g we set (9, AG(m)) = Ef;l 9i(Gy, —
Gz,_,). Let
M, = median (“AG(r(n))”@)) .

Then, using Borell’s inequality as we did in lemma 2.1 of [4], we have
@15) P (LIAGRm)@) ~ Ma |> 1) < 2exp(—t2/262)

and the estimate

(2.16) | E(IAG(r(m)la)) = Ma |< 6V
where
&2 ef sup E {(g,AG(ﬂ'(n)))z} )
{s:llgll o= <1}
Using (2.14) we see that
5 < sup B {(g, AG(n(n)))?}

{9}, ®*(90)<1}
< sup E{(g, AG(r(n)))?}
{g:llsll<2}
(2.17) < csu_pa""(z,-—z;_l)

for some ¢ < 00, as in the proof of lemma 2.2 of [4]. Here we have used the
fact that for some ¢ < oo

®*(z) < 1= 2% < &0*(2).

This fact is most easily derived from the following chain of implications for
T near zero: By the concavity of 0%, we have 02(z) > cz and therefore
o(x) > cz'/?, s0 that ®(z) < cz?, which implies that ®*(z) > c22 b y (2.9)
of [3].

Note that

”AG(W(n))”ﬁP) <1+ Z Q(Gl‘i - Gl‘.‘-l)’

see e.g. [3], (9.12) and (9.20). Using this, (2.1), (2.16) and (2.17) show that
{M.},n=1,... 0o is bounded. Hence some subsequence M,,; has a limit
point M,.. We now show that

(2.18) M?P = E(|Z|P)a
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and that along the subsequence {n;}

2.19 i &(Gz, — Guy_,) = MF .8.
(2.19) Jim, EZ(: ) (Gz, = Geioa) a.s
rienx(n;

This will complete the proof of our theorem just as in the proof of Theorem
1.2 of [4], since the uniqueness of the limit point M, demonstrated in (2.18)
will show that we actually have convergence of the full sequence in (2.19).

To prove (2.18) and (2.19) we begin by arguing exactly as in [4] to find
that

def

(2.20) Rn,(w) = |AG(7(ni)li@) — M« a.s. as j— oo

By definition we have

(2.21) Y@ (G”"(“’) - G""—‘(“’)) =1

z.€n(n;) R"J’ (UJ)

see e.g. [3], chapter II, section 7. Now note that by the regular variation
of ®, for fixed w in a set of measure 1 and for any ¢ > 0, we can find N so
large that for all n; > N we have

UF T #(a-6e)

zi€m(n;)
Gy — Gy,
< @ 1 t=1
< ¥ (=)
zi€7(n;) !
14¢
(2.22) S (Mf) E Q(q:i _GIi—l)'
z€n(n;)

Therefore by (2.21) and (2.22) we get (2.19). To obtain (2.18) we observe
that in the notation of (2.3)

(2.23) ) @(Gz,.—Gx‘._‘)z/OaFnJ.(w,:c)dx.

zi€n(n;)

Hence, using (2.4) and Cauchy-Schwarz inequality we see that

p [( [ 5o dz)z]
aE (/0 F} (2) dz)

ca

2
E ( Z (I)(Gzi—Gri—1))

zi€x(n;)

IN

(2.24)

IA
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uniformly in n;. Therefore, (2.23) is uniformly integrable, and (2.19) and
(2.1) now imply that

MI"’ = hm.’l—’oo E (Z:::.-Gr(nj) (D(G-"-‘i - Gl’i—x))
(2.25) = E(|Z|P)a

by (2.1). This proves (2.18), and completes the proof of (1.10) of Theorem
2. (1.11) follows from (1.10) as in the proof of Theorem 1.2 of [4].

3 L™ Convergence

Theorem 3 will follow from Theorem 1 as in the proof of Theorem 1.1 of
(4] once we establish the next lemma, which is the analogue of Lemma 3.4
of [4].

For a fixed partition 7 we introduce the notation
Lellre = > ®(ALYY)
T;Ew

where
ALY = LY — Lf“‘,

and we let .
o) = [ p.(0)ds
0
denote the partial Greens’ function.

Lemma 1 Let X = {X(t),t € R*} be a real valued symmetric Lévy pro-
cess with o*(z) concave on [0, 6] and regularly varying at zero of order f—1
where 1 < <2, and let {L7,(t,z) € Rt x R} be the local time of X.

Let ®(z) denote any function which is an inverse for o(z) near z = 0.
(Thus, ®(x) is regularly varying at zero of order 2/(B—1)). Then we can
find an € > 0 such that for all partitions  of [0,a] with m(7) < ¢, and all
5,t,T€ RY, withs <t < T < oo, and integers m > 1

(3.1) HIZdlx2 = l|Lallx,0llm < C(8,m, T)g"/%(t - s)a
and in particular
(3-2) HIZlr,2llm < C(8,m, T)g"/*(t)a.

Proof: As before, we can take & to be convex, so that the monotonicity
of @’ together with the Mean Value Theorem show that

|2(u) — 2(v)| < ('(w) + &' (v)) Ju~ o].
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Hence
(33 |l liLellx® — ILsllx,2llm
< D0 IIR(ALT) — (AL )Im
TiEW
< D (IR (ALE ) lam + 1 (ALE)lam)IALT — AL ||2m
TiEW

With the notation _
ALY

o(Az;)
and using (2.6)-(2.8), but with ® replaced by ®' we see that for some fixed
candany k >p=2/(-1)

Z; =

12/(ALFlom = || 5t llom® (0(Az:))

(3:4) < il + Zf|lem @' (0(Az:)).-

By (3.17) of [4] we see that for any u € R and any integer j > 1

(3.5) E*(ALT)H < (25)12 (9" % ()0 (D)) ¥
so that
(3.6) 11+ ZF|l2m < 14 cg*/2(2).

Similarly, using (3.5) together with the Markov property as in the proof of
lemma 3.4 of [4] we see that

(3.7) IALE = AL |lom < eg"/2(t - s)o(Dz2).

Using once again the convexity of ®, the Monotone Density Theorem, (the-
orem 1.7.2b of [1]) shows that

(3.8) z®'(z) ~ p®(z) as z—0.

Putting these estimates together and remembering that @ is an inverse for
o near zero finishes the proof of Lemma 1.

4 Examples

We will now give examples of Lévy processses which satisfy the assumptions
of Theorem 1.

Lemma 2 Let y be a finite positive measure on (1,2] and let

¥(A) = /1 * du(s).
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Then ¢ is a Lévy exponent, and
1 —cos /\x)
o= [
@=) ™
15 concave on [0, 00).

Proof: Note that
(41)  20%z)-o*(z—h)— o (z+ h)

= /000(1 — cos v)

[ 2 1 B 1 ] "
zp(v/z)  (z+h)f(v/z+h)  (z - h)p(v/z —h)

for all |h| < |z|. Therefore, to show that o2 is concave on [0, 00) it suffices
to show that the term in the bracket is positive, i.e. that 1/zy(v/z) is
concave in z for all z > 0,v > 0. This is clearly equivalent to showing that
g(z) = 1/xy¢(1/z) is concave for z > 0.

By definition

1
" e
so that _
J(2) = fl s — )z=* du(s)
(fl gl- ’d,u(s))
and
(z) = 2 (flz(s — 1z~ du(s)) _ flz s(s —1)z—*~1 d,u(.s).

(2 212 du(s))” (2 21 dus))’

Thus, ¢” <0 if

2 ( / (s = 1) dﬂ(S))z < / " sfs ~ 02" du(s) / "2 du)

or equivalently

2 ( / o= e du(S))2 < / s(s — )2~ du(s) / "2 du(s).

This last inequality follows from the Schwartz inequality applied to

2 (/12(3 —z~* dp(s))z

=2 (./12 [z7°(s ~ 1)/s]1/2 [z7*(s — 1)s] 1z dp(s))

2
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since 2(s —1)/s < 1.
That ¥(A) is a Lévy exponent follows immediately from the fact that
A is a Lévy exponent.O

Lemma 3 Let 1 < 8 <2, and let p(s) be a bounded, continuous, increasing
function such that the measure dp is supported on the interval [0,8 — 1).
Then, we can find a Lévy process with exponent ¢ such that

P(A) = M jp(In A)

for all X > 0, and such that 0?(x) is concave on [0,00). Here

= [ duto)

Proof: Set
n(s) = lpl = p(B - s)
where [p| denotes the mass of dp. u(s) is a continuous, increasing function
such that the measure du is supported on the interval (1, 3]. By Lemma 2,

2 associated with

Pp(A) = f12 A® du(s) is a Lévy exponent and the function o
% is concave on [0, c0).

Our present lemma then follows from the fact that
2 8
@) W= [ e = - [ X ds-s)
1 1
p-1
= M / A% dp(s)
0

-1

— /\ﬁ/ e—(ln)\)sdp(s)
0

= Mp(In)). o

Combining Lemma 3, (1.4), and Theorem 1.7.1° of [1], we obtain a large
class of Lévy processes which satisfy the hypotheses of our theorems. In
particular, if g(In ) is slowly varying at infinity and 1 < 8 < 2 then we
can fin d a Lévy process with exponent ¢ given by (3.2) and with concave
o%(z) ~ cﬁ]m|ﬁ‘lmﬂ. By the cited Theorem in [1] we see that we
can find a g(A) asymptotic at infinity to any regular ly varying function of
index less than zero, or to any decreasing slowly varying function. Taking
h(z) = Cpm leads to the following Corollary mentioned at the end of
section 1.

Corollary 1. Let h(z) be any function which is regularly varying and
increasing as x — 00, and let 1 < 3 < 2. Then we can find a Lévy process
with 02(z) concave such that

o?(z) ~ |z|’~th(In 1/z) asz — 0.
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