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The number of lead codes (defined below) for ballots ending in a tie after 2»
votes, and weighted by the product of code elements is shown to be the tangent
number 7, . The proof also yields a simple expression for the Ursell functions
of the linear Ising model, which is used to show (—1)"1U/,.() > 0 in the
ferromagnetic case.

1 INTRODUCTION

The lead code for a two-candidate ballot is the record of the lead as the
votes are cast. For ballots ending in a tie after 2n votes, the lead codes
can be characterized as the mappings

140, 1,2,.., 2n] ~> [0, 1,..., n)

such that /(0) = I/(2n) = 0 and I(j + 1) = /(j) =1 (so that /(1) =
I2n — 1) = 1). The set of such mappings is denoted, by L(2n). For
example, L(4) = 01010, 01210 and L(6) = 0101010, 0121010, 0101210,
0121210, 0123210. The number of elements in L(2n) is, of course, the
Catalan number, ¢, = (2n)!{(n + D! a!.

An n element subset of [1, 2,..., 2n] is called a chording code if, for any
P << 2n the number of integers <C p in the code, is greater than or equal
to the number not in the code. For # = 2, 3 the chording codes are 12, 13
and 123,124, 125,134, 135. The term ‘“‘chording” code comes from
association with the problem of determining the number of ways 2» points

* Supported in part by the Naticnal Science Foundation under Grant MPS 74-13252.

377
Copyright © 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved.




378 JAY ROSEN

on a circle may be joined in pairs of nonintersecting chords, for details
see [1]. The chording code for a pairing of [1, 2,..., 2r] into » pairs is the
set obtained by choosing the smallest integer in each pair.

If 1 e L(2n), it is easily scen that the a integers j with I(j) — I(j — 1) = 1,
form a chording code. Similarly, given a chording code, if we let /(0) = 0,
and Kj) = I(j — 1) - L or I(j) = I{j —- 1) — | according as j is or is not
in the code, it is seen that / ¢ L(2n). Hence, this correspondence of lead
codes and chording codes is bijective.

If P is a partition of [I, 2,..., 2n] with even blocks [= parts], P gives rise
to a pairing of [1, 2,..., 21] into » pairs by pairing consecutive integers in
each block. The lead code corresponding to this pairing is denoted by A(P).
For example, the partition P == (1356)(24) gives rise to the pairing
{13)(56)(24), so that A(F) = 0121010.

The main result of this paper is

THEOREM 1.
2n—1
> O Iih=T. (1
ieL(2n) j=1
where
e xan-1
tdn(x) = ; Tn Tm .

The term summed on the left is a product-weighted lead code. The
tangent numbers T, appear in [7, seq. 829] for » = 1(1)12. The first few
are 1, 2, 16, 272. Theorem 1 is proven in Section 2.

Product-weighting arose from consideration of the linear Ising model.
It will be seen that the Ursell functions for this model have a simple
expression in terms of product weighted lead codes. It has been conjectured
[2, 3] that (—1)*+! U,,(-) 2> O for ferromagnetic Ising models. The simple
expression mentioned establishes these inequalities for the linear model.

2. THE NUMBER OF PRODUCT-WEIGHTED LEAD CODES FOR BALLOTS

Let E(2n) denote the set of even partitions of [, 2,..., 2»]. If P € E(2n}.
| P | denotes the number of blocks in P. The mapping A: E(2n) — L{2n)
has been defined in the introduction. The proof of Theorem 1 depends on

LemMa 2. For any I L(2n),

2n—1

) (—=DF P — D = (= U 1(7). (2)

PcE(2n) i A(P)=L
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Theorem 1 follows by summing (2) over all / € L(2r) and using

LemMA 3.
> (D P = D= (=T &)
PeE(2n)
Proof of Lemma 2. The proof is by induction. The lemma is trivial
for n = 1, so assume it is true for all v <¢ m. Fix [ € L(2m). It is clear that
there is a unique integer 2m — h, called the last peak of /, such that

I2m —h+-j)y=h-—-j 0<j<h
2m—h—1)=h—1.

# is called the height of the last peak. The last peak, 2m — A, is the largest
integer in the chording code corresponding to /; hence, if A(P) = I, (i) the
integers 2m — h + j, 1 <Cj =< h must be terminal integers in their blocks,
which are therefore distinct, and (ii) the integer 2n» — h must appear in
a block with one of the last & integers.

To use induction, let C(I) (€ L(2m — 2)) be the lead code obtained by
removing from / the last peak and the integer 2m — k 4 1 immediately
succeeding it and filling in the gap in the natural way. Explicitly

CH(j) = 14 0<j<<2m—h—1
CHm—h—14+k)=h—1—ki O0Z<k<h-—1

There is a map B: E(2m) — E(2m — 2} which covers C, in the sense that
the following diagram is commutative

EQm) —2> EQm — 2)

A 4
L2m) =% L(2m — 2)

If A(P) = I, B(P)is obtained by removing 2m — h together with the largest
integer in its block from P, and filling in the gap in the natural way. More
precisely, by (i) and (ii) there is a unique integer among the last # integers,
say, 2m — h - i, appearing in the same block as 2m — A. Remove
2m — h -+ i and subtract 1 from each of the integers succeeding it. Repeat
this process for 2m — 4 to obtain the partition B(P) € E(2m — 2). Clearly
A(B(P)) = C(I). Write

L (PR NEDS > (“1)”’"1("’5_”!%‘
PAP)I=1 R:A(R)=C(D) p:{g((}f;:k

)
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Fix Re E2m — 2} with A(R) = C({). To compute the inner sum in (4),
it is first necessary to specify all P € E(2m) with 4(P) = !/ and B(P) = R.

First, specify the largest integer in the block of P containing 2m — A.
Since P is required to satisfy 4(P) = I, by (i} and (ii), this integer may be
any one of the last Aintegers, 2m — h + j, 1 < j < h. Sayitis2m — h + i,
Add 1 to the last # — 1 integers in R, and then add 1 more to the last & — i
integers to obtain a partition, R, of [I,...,2m — h — 1,2m — h 4 1,...,
2m—h+i—1,2m—h+i+1,.,2m].

To complete the specification of P, since P is required to satisfy
B(P) = R, it only remains to specify in which, if any, block of R the pair
2m — h, 2m — h —+ i is to be placed.

If this pair is placed in one of the blocks of R, it must by (i) avoid any
block containing one of the 2 — 1integers 2m — h + ;1 << j < A, j # L.
Since A(R) = C(I), as in (i) these # — 1 integers appear in distinct blocks
of R. Hence the pair 2m — h, 2m — h - i can be placed in any one of
[ R| — (h — 1) blocks, and then [ R| = | P 1.

However, the pair need not be placed in a block of R. It can

form a two element block of P, and then |P| = | R| -1 so that
(=P P — D! = —R(—D!*({ R — DT,
Therefore,

PG Lt (PR ]
p{API=1
B(P)=R

=hIR|—(h—1) — [ R[] Ri— 1!
= —h(h — D(—DIRY R| — 1)!

By (4) and the induction hypothesis (2)

Y =DF P D = —hth—1) > (=DRICR| - D!

P:A(P)==1 RiA(R)=C(D)

2m—3

= —h(h — (=1 TT )
i=t

2m—1

= (-~ T G,

completing the proof of Lemma 2.
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Proof of Lemma 3. 1t is known [4] that the enumerator of E(2n) by
number of blocks, E,(x), has the generating function

Y E(x) {Q’W — exp(x(cosh(y) — 1))

0

5
= ¥ % (cosh(y) — 1.

0

Hence, with x/ = o; = (—1)Y"(j — 1)! = s(J, 1), the Stirling number of
the first kind

y2n . i1 (COSh(y) - I)J
;Eﬂ(a)ﬂ? = g(—l) —
= log(cosh( y)).
Hence, with i2 = —1,
Y. Ei) g5y — 4 (og(cosh(3))
= tanh(y) = —i tan(iy)

v2n—1

=L Ty

Therefore,

Z (=DIPY(|P| — D) = E (x) = (1) T,.

PeE(2n)

(6)

I am grateful to John Riordan for the following observation. If T,(x)
is the polynomial for the central difference numbers T(n, k), it follows
from the known identity [5]

exp(¥7T(x)) = exp[2xsinh(y/2)],  T™(x) = T,(x)
that

cosh(yT(x)) = cosh [2x sinh (%—)]
~2i }
= %W(cosh(y) —1

with a; = (2/)/27j! .
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Comparison with (5) shows

Efx) = Y T(2n, 2k) a,x*

k=1

so that by (6)
(=) T, = 3 T(2n, 2k) ags(k, 1)
1

an identity to be compared with [6, (2)] for the Genocchi numbers.

3. THE URSeLL FUNCTIONS OF THE LINEAR ISING MODEL

This section describes the linear Ising model and its Ursell functions.
Lemma 2 yields a simple expression for these functions from which many
of their important properties can be read off.

Let o, , i an integer, be a sequence of independent, identically distributed
spin-} random variables, i.e., Prob{o;, = 1) = Prob{g; = —1) = 4. If o4
are random variables on a probability space (X, A, du,), given a sequence
of real numbers g; , i an integer, a new probability measure, dp, is defined
on X by

_ exp(X: 8:0:0:41) dity .
ICXP(Zi £:0:0541) dikg

Since n; = 0,0, Is also a sequence of independent spin-} random
variables, it is easy to see that

f exp (Z giO‘iai-:—l) dpy = H cosh(g;)

f 01051 dp = tanh(g)

i—1 .

[ o0, dp = H (J OuOpi dy.) for i <j

=1

and for 1, < i, << - < iy

(M

J‘ 0.0, O du = T ([ Uizjvlamdﬂ)

i=1

f 40, " Tiy du = 0.
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The Ursell functions Uzn(a,-l eers crz-“) [8] are defined by the formula

Ui, o oi) = 3 (=DP( P — DT ([ TT 0w dir)

PeE{2n) PP keP;

)

where the P, are the blocks of P. U, (") is a symmetric function of its
arguments, and we set U,, (") = 0.
If iy < i, << - < iy, note that by (7)

2n—1 A(P){E)
H (J. H iy d”) = H (f T8 d,u)
Per kEPJ k=1

where A(P} e L(2n) has been defined in the introduction. Equation (8) can
be rewritten as

U2R(Uz‘ls---’ Gz‘gn)

= T Comgp oy Ijl ([ o)™
= T (3 o =) 0T ([ e dn)

teL(2n) ‘P:A4(P)=1 i=1

Lemma 2 then yields

THEOREM 2. leti, <@y << - < 1y, . Then

2n—1

Vs 02) = (=100 S T ([ asoiede) - ©)

teL(2n) j=1

Consider first the ferromagnetic case where all g; = 0, so that all
Jo.0;dp = 0. Since all (j) = 0, Theorem 2 shows that (— 1) U,,(-) = 0.

Next, specialize to the translation invariant case of all g;, = g > 0,
so that [o,0;dp = (tanh(g))"~/, with 0 < tanh(g) < 1. The product
weighting in Theorem 2 ensures that all I(j) = 1, so that (9) exhibits the
“cluster property”

lim . U4y 505 04y,) = 0

ian

of the Ursell functions in a transparent form.
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