
Moduli of Continuity of Local Times of Strongly

Symmetric Markov Processes via Gaussian Processes

1. Introduction. In this paper we show that the moduli of continuity of the local times

of a large class of Markov processes can be easily obtained if one knows the moduli of

continuity of the Gaussian processes that are associated with the Markov processes. And,

since the moduli of continuity results for the Gaussian processes are either well known,

or in many cases easy to obtain, we get similar moduli of continuity results for the local

times. This paper is an application of [MR] in which we obtained necessary and sufficient

conditions for continuity and boundedness of the local times of strongly symmetric standard

Markov processes by establishing the equivalence of these conditions with those of the

associated Gausssian processess. The key ingredient in this work is an application of

Lemma 4.3 of [MR] which is itself a corollary of an isomorphism theorem of Dynkin [D],

[D1] which relates local times and Gaussian processes. (For another application of these

methods see [MR1]).

Let (S, ρ) be a locally compact metric space with a countable base and let X =

(Ω,Ft, Xt, P
x), t ∈ R+, be a strongly symmetric standard Markov process with state

space S. In saying that X is symmetric we mean that there is a σ–finite measure m( · ) on

S such that the Markov transition function Pt satisfies

(Ptf, g) = (f, Pt g) ∀t ∈ R+

for all measureable functions f and g in L2(S) where (f, g) ≡
∫
fg dm is the usual inner

product. In saying that X is strongly symmetric we mean that in addition to X being

symmetric the measure Uα = Uα(x, · ) given by

Uα(x, · ) =
∫ ∞

0

e−αtPt(x, · ) dt

is absolutely continuous with respect to m for some α > 0, (and hence for all α > 0).

In this case there is a canonical symmetric α–excessive density uα = uα(x, y) for Uα.

Moreover a strongly symmetric standard Markov process X has a symmetric transition

density function pt(x, y) and

uα(x, y) =
∫ ∞

0

e−αtpt(x, y) dt

Let L = {Ly
t , (t, y) ∈ R+×S} denote the local times of X. It is known that a necessary

and sufficient conditon for the existence of a local time for a strongly symmetric standard
1
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Markov process is that

uα(x, y) <∞ ∀x, y ∈ S

We assume this throughout this paper and normalize the local time by setting

(1.1) Ex

(∫ ∞

0

e−αt dLy
t

)
= uα(x, y)

(If (1.1) holds for any α > 0 it holds for all α > 0).

It is well known, (see e.g. Theorem 3.3 [MR]), that the function uα(x, y) is positive

definite on S × S for each α > 0. Therefore, for each α > 0, we can define a mean zero

Gaussian process {Gα(y), y ∈ S} with covarience

E(Gα(x)Gα(y)) = uα(x, y) ∀x, y ∈ S

The processes X and {Gα(y), y ∈ S}, which we take to be independent, are related through

the α–potential density uα(x, y) and are referred to as associated processes. To simplify

the statement of our results we will always consider X and the associated Gaussian process

corresponding to α = 1, that is {G1(y), y ∈ S}. In what follows we denote this process by

G = {G(y), y ∈ S} and note that the natural L2 metric induced by G is a function of the

1–potential density, i.e.

(1.2) d(x, y) ≡ (E(G(x)−G(y))2)1/2 = (u1(x, x) + u1(y, y)− 2u1(x, y))1/2

The fact that d is a metric and not a pseudo–metric is because u1(x, x) > 0 for all x ∈ S,

(see e.g. Lemma 3.6 [MR]). For simplicity we assume that d induces the same topology on

S as the original metric ρ. (Although it is easy to handle the general case as we point out

in Remark 3.4).

Let K ⊂ S be compact. Under very general conditions, whenever a Gaussian process

{G(y), y ∈ K} has continuous sample paths it also has both an exact uniform and an exact

local modulus of continuity. To be more precise we call ω : R+ → R+ an exact uniform

modulus of continuity for {G(y), y ∈ K} if

(1.3) lim
δ→0

sup
d(x,y)≤δ

x,y∈K

|G(x)−G(y)|
ω(d(x, y))

= 1 a.s.

We call ρ : R+ → R+ an exact local modulus of continuity for {G(y), y ∈ S} at some fixed

y0 ∈ S if

(1.4) lim
δ→0

sup
d(y,y0)≤δ

y∈S

|G(y)−G(y0)|
ρ(d(y, y0))

= 1 a.s.
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We use the expressions uniform and local moduli of continuity for functions ω and ρ for

which the equality signs in (1.3) and (1.4) are replaced by “less than or equal” signs. We

use the terms lower uniform and local moduli of continuity for functions ω and ρ for which

the equality signs in (1.3) and (1.4) are replaced by “greater than or equal” signs. We will

always assume, in our discussions of moduli of continuity, that {G(y), y ∈ K} is continuous

on (S, d). Other ways of defining moduli of continuity, some of which are equivalent to the

definitions given in (1.3) and (1.4) and some which are not, are discussed in Section 4.

Our methods for studying moduli of continuity of local times enable us to only consider

the Markov processes up to, but not including, their lifetimes. We shall denote the lifetime

of the strongly symmetric standard Markov processX by ζ. We obtain the following results

relating the moduli of continuity of the local times of strongly symmetric Markov processes

with the moduli of continuity of their associated Gaussian processes.

Theorem 1.1. Let X be a strongly symmetric standard Markov process and let G =

{G(y), y ∈ S} be the associated Gaussian process. Let {Ly
t , (t, y) ∈ R+ × S} be the local

time of X. Then if ρ is an exact local modulus of continuity for G at y0 ∈ S

(1.5) lim
δ→0

sup
d(y,y0)≤δ

y∈S

|Ly
t − Ly0

t |
ρ(d(y, y0))

=
√

2 (Ly0
t )1/2 for almost all t ∈ [0, ζ) a.s.

We note that if ρ is simply a local modulus of continuity for {G(y), y ∈ S} then the

expression in (1.5) holds with the equality sign replaced by a “less than or equal sign.”

Theorem 1.2. Let X be a strongly symmetric standard Markov process and let G =

{G(y), y ∈ S} be the associated Gaussian process. Let {Ly
t , (t, y) ∈ R+ × S} be the local

time of X and let K ⊂ S be compact. Then if ω is a uniform modulus of continuity for

{G(y), y ∈ K}

(1.6) lim
δ→0

sup
d(x,y)≤δ

x,y∈K

|Lx
t − Ly

t |
ω(d(x, y))

≤
√

2 sup
y∈K

(Ly
t )1/2 for almost all t ∈ [0, ζ) a.s.

The next theorem shows that if ω is an exact uniform modulus of continuity for G then

it is “best possible” in (1.6).

Theorem 1.3. Let X be a strongly symmetric standard Markov process and let G =

{G(y), y ∈ S} be the associated Gaussian process. Let {Ly
t , (t, y) ∈ R+ × S} be the local

time of X and let K ⊂ S be compact. Then if ω is an exact uniform modulus of continuity

for {G(y), y ∈ K} there exists a y0 ∈ K such that

(1.7) lim
δ→0

sup
d(x,y)≤δ

x,y∈K

|Lx
t − Ly

t |
ω(d(x, y))

≥
√

2 (Ly0
t )1/2 for almost all t ∈ [0, ζ) a.s.
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We can improve on (1.7) when the associated Gaussian process and the state space S

have sufficient regularity.

Theorem 1.4. Let X be a strongly symmetric standard Markov process and let G =

{G(y), y ∈ S} be the associated Gaussian process. Let {Ly
t , (t, y) ∈ R+ × S} be the local

time of X. Furthermore, let (S, d) be a locally homogeneous metric space, i.e. any two

points in S have isometric neighborhoods in the metric d, and let K ⊂ S be a compact set

which is the closure of its interior. Then if ω is an exact uniform modulus of continuity

for {G(y), y ∈ K}

(1.8) lim
δ→0

sup
d(x,y)≤δ

x,y∈K

|Lx
t − Ly

t |
ω(d(x, y))

=
√

2 sup
y∈K

(Lt
y)1/2 for almost all t ∈ [0, ζ) a.s.

The fact that we can only obtain these results for almost all t is a weakness of our

method which is explained in [MR].

Lemma 4.3, [MR] as well as the Dynkin Isomorphism Theorem, relate local times to the

squares of Gaussian processes. Thus we need to investigate properties of the uniform and

local moduli of continuity for the squares of Gaussian processes. These questions have not

been looked at earlier because they are not natural from the viewpoint of the theory of

Gaussian processes. This will be done in Section 2.

In Section 3 we will give the proofs of Theorems 1.1–1.4. Since these Theorems allow

one to lift results for Gaussian processes to those of the associated local times, in Section

4 we will survey known results about the moduli of continuity of Gaussian processes and

also present some new results to tie up loose ends. Lastly, in Section 5, we will use our

results to study the moduli of continuity of real valued Markov processes and in particular

of Lévy processes. Some of our results complement interesting work of Barlow [Ba] on the

uniform modulus of continuity of the local times of Lévy processes.

2. Moduli of Continuity for the Squares of Gaussian Processes. The first Lemma

is simple and probably known. It establishes conditions for a Gaussian process to have an

exact uniform modulus of continuity. We give it to make our presentation more complete.

To avoid trivialities in what follows we will assume, whenever we are considering the local

modulus of continuity of G = {G(u), u ∈ S} at a point u0 ∈ S, that G and (S, d) are such

that

(2.0) sup
d(u,u0)≤δ

|G(u)−G(u0)| > 0 ∀ δ > 0
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and whenever we are considering the uniform modulus of continuity of G, that

(2.1) sup
d(u,v)≤δ
u,v∈K

G(u)−G(v) > 0 ∀ δ > 0

where K is a compact subset of S.

Lemma 2.1. Let {G(u), u ∈ S} be a mean zero Gaussian process with continuous metric

d, as given in (1.2). Let τ : R+ → R+ and K ⊂ S be a compact set. For the following

three statements:

(2.2) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G(u)−G(v)
τ(d(u, v))

≤ C a.s. for some 0 ≤ C <∞

(2.3) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

d(u, v)
τ(d(u, v))

= 0

and

(2.4) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G(u)−G(v)
τ(d(u, v))

= C ′ a.s. for some 0 ≤ C ′ ≤ ∞

we have that (2.2) implies (2.3) implies (2.4). (Obviously, if (2.2) holds then C ′ < ∞ in

(2.4) but (2.3) implies (2.4) even if the limit superior in (2.2) is not finite almost surely).

Proof. To show that (2.2) implies (2.3) we show that if (2.3) does not hold then (2.2)

does not hold. Suppose that (2.3) does not hold but that (2.2) does. Then there exists a

sequence of pairs {(uk, vk)}∞k=1 such that for all k, uk, vk ∈ K and d(uk, vk) ≥ ετ(d(uk, vk))

and limk→∞ d(uk, vk) = 0. It follows from (2.2) that almost surely

C ≥ lim
δ→0

sup
d(u,v)=δ
u,v∈K

G(u)−G(v)
τ(d(u, v))

≥ lim
k→∞

ε(G(uk)−G(vk))
d(uk, vk)

which gives

(2.5) lim
k→∞

G(uk)−G(vk)
d(uk, vk)

≤ C

ε
a.s.

But for each k ≥ 1, (G(uk) − G(vk))/d(uk, vk) is a normal random variable with mean

zero and variance 1 and (2.5) can not be finite almost surely for such a sequence. (This

is because ∪k≥n{ξk > C/ε} ⊃ {ξn > C/ε} and the probability of this last set is greater
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than zero for any sequence of identically distributed unbounded random variables). Thus

we see that (2.2) implies (2.3).

To show that (2.3) implies (2.4) we expressG in terms of it’s Karhunen–Loeve expansion,

(see e.g. Theorem 2.6, [MR]).

G(u) =
∞∑

j=1

ξjφj(u) u ∈ S

where {φj}∞j=1 are continuous functions on (S, d) and {ξj}∞j=1 are independent indentically

distributed normal random variables with mean zero and variance 1. Clearly, in this case

d(u, v) =

 ∞∑
j=1

(φj(u)− φj(v))2

1/2

Set

GN (u) =
N∑

j=1

ξjφj(u) u ∈ S

and note that

|GN (u)−GN (v)| ≤

 N∑
j=1

|ξj |

 sup
1≤j≤N

|φj(u)− φj(v)|

≤

 N∑
j=1

|ξj |

 d(u, v)(2.6)

It follows from (2.3) and (2.6) that

lim
δ→0

sup
d(u,v)≤δ
u,v∈K

GN (u)−GN (v)
τ(d(u, v))

= 0 a.s.

Therefore for 0 < C ′′ ≤ ∞ the event

lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G(u)−G(v)
τ(d(u, v))

≥ C ′′ a.s.

is a tail event and hence occurs with probability 0 or 1. This implies (2.4).

The next lemma shows that an exact uniform modulus of continuity for a Gaussian

process on a compact set K is also an exact modulus of continuity for the process on

some arbitrarily small compact subset of K. However, since we are also interested in one

sided results we will state the next lemma and some of the subsequent results for the

lower uniform modulus of continuity. To avoid unnecessary complications, from now on

we will always assume that the Gaussian processes have continuous sample paths and that

the moduli of continuity go to zero as δ goes to zero. In what follows we will say that a

modulus, say ω, satisfies (2.3), if (2.3) holds with τ replaced by ω.
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Lemma 2.2. Let G = {G(u), u ∈ S} be a mean zero Gaussian process with continuous

sample paths and let K ⊂ S be a compact set. Assume that ω is a lower uniform modulus

of continuity for {G(u), u ∈ K} that satisfies (2.3). Then there exists a u0 ∈ K such that

for all ε > 0

(2.7) lim
δ→0

sup
d(u,v)≤δ

u,v∈B(u0,ε)∩K

G(u)−G(v)
ω(d(u, v))

≥ 1 a.s.

where B(u0, ε) = {u ∈ S : d(u, u0) ≤ ε}.

Proof. We will first show that for all εn > 0 there exists a u0(εn) ∈ K such that

(2.8) lim
δ→0

sup
d(u,v)≤δ

u,v∈B(u0(εn),εn)∩K

G(u)−G(v)
ω(d(u, v))

≥ 1 a.s.

Consider the sets {B(x, εn/2) : x ∈ K}. Obviously, K ⊂ ∪x∈KB(x, εn/2). Let B(x1, εn/2),

. . . , B(xm, εn/2) be a finite cover of K. Note that if u, v ∈ K such that d(u, v) < εn/2

then both u and v are contained in B(xj , εn) for some 1 ≤ j ≤ m. Thus, for 0 < δ < εn/2

(2.9) sup
1≤j≤m

sup
d(u,v)≤δ

u,v∈B(xj ,εn)∩K

G(u)−G(v)
ω(d(u, v))

= sup
d(u,v)≤δ
u,v∈K

G(u)−G(v)
ω(d(u, v))

Suppose there exists an ε′ > 0 and a 1 ≤ j ≤ m such that

(2.10) lim
δ→0

sup
d(u,v)≤δ

u,v∈B(xj ,εn)∩K

G(u)−G(v)
ω(d(u, v))

≤ 1− ε′

on a set of positive measure. Then, since (2.3) holds on B(xj , εn) ∩ K, it follows from

Lemma 2.1 that the event in (2.10) must hold almost surely. If the event in (2.10) holds

almost surely for all 1 ≤ j ≤ m, we can take the lim sup as δ goes to zero of the two sides

in (2.9) to get

(2.11) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G(u)−G(v)
ω(d(u, v))

≤ 1− ε′ a.s.

which contradicts the fact that ω is a lower uniform modulus of continuity for G. Thus

the limit superior in (2.10) is greater than or equal to 1 almost surely for some 1 ≤ j ≤ m.

We set u0(εn) = xj for some j for which this occurs. Now choose a sequence εn → 0 and

consider the balls B(u(εn), εn) for which (2.8) holds. Since K is compact there exists a

sequence {unk
}∞k=1 such that limk→∞ unk

= u0 for some u0 ∈ K. It is easy to see that
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for all ε > 0 there exists a k0(ε) such that for k ≥ k0(ε), B(u(εnk
), εnk

) ⊂ B(u0, ε). This

observation and (2.8) gives (2.7).

The next lemma is in preparation for the study of the moduli of continuity for squares

of Gaussian processes. To avoid confusion and since, because of Lemma 3.6 [MR], we will

only be concerned with Gaussian processes for which

(2.12) EG2(u) > 0 ∀u ∈ S

we will assume this condition in the remainder of this Section.

Lemma 2.3. Let G = {G(u), u ∈ S} be a mean zero Gaussian process which is continuous

on some compact set K ⊂ S and which satisfies (2.12). Then given any ε′ > 0 and u0 ∈ K
there exists an ε > 0 such that

(2.13) inf
u,v∈B(u0,ε)∩K

|G(u) +G(v)|
|G(u0)|

≥ 2(1− ε′)

on a set of measure greater than or equal to (1− ε′).

Proof. Since

|G(u) +G(v)| ≥ ( 2|G(u0)| − |G(u)−G(u0)| − |G(v)−G(u0)| )

we see that for all u, v ∈ B(u0, ε) ∩K, for some ε > 0, we have

|G(u) +G(v)|
|G(u0)|

≥ 2

(
1− sup

u,v∈B(u0,ε)∩K

|G(u)−G(v)|
|G(u0)|

)
Therefore

(2.14) inf
u,v∈B(u0,ε)∩K

|G(u) +G(v)|
|G(u0)|

≥ 2

(
1− sup

u,v∈B(u0,ε)∩K

|G(u)−G(v)|
|G(u0)|

)

Since, by (2.12), |G(u0)| > 0 almost surely we see that

lim
ε→0

sup
u,v∈B(u0,ε)∩K

|G(u)−G(v)|
|G(u0)|

= 0 a.s.

and so given ε′ > 0 we can find an ε such that

(2.15) P

(
sup

u,v∈B(u0,ε)∩K

|G(u)−G(v)|
|G(u0)|

≤ ε′

)
≥ 1− ε′

Using (2.15) in (2.14) we get (2.13).

We now obtain the inequality for Gaussian processes which gives the lower bound in

Theorem 1.1.
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Theorem 2.4. Let G = {G(u), u ∈ S} be a mean zero continuous Gaussian process which

satisfies (2.12) and which has a lower uniform modulus of continuity ω on a compact set

K ⊂ S satisfying (2.3). Then there exists a u0 ∈ K such that

(2.16) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G2(u)−G2(v)
2ω(d(u, v))

≥ |G(u0)| a.s.

Proof. Fix δ′ > 0 and ε′ > 0 and note that for all ε > 0

(2.17) sup
d(u,v)≤δ′

u,v∈B(u0,ε)∩K

G2(u)−G2(v)
2ω(d(u, v))|G(u0)|

≥ sup
d(u,v)≤δ′

u,v∈B(u0,ε)∩K

|G(u)−G(v)|
2ω(d(u, v))

inf
d(u,v)≤δ′

u,v∈B(u0,ε)∩K

|G(u) +G(v)|
|G(u0)|

Let u0 be the element of K for which Lemma 2.2 holds. For this u0 choose ε in (2.17) so

that Lemma 2.3 holds for the fixed ε′. Now repeat (2.17) with the chosen values of u0 and

ε but with δ′ replaced by δ ≤ δ′. Since the last term in (2.17) is greater than the left–hand

side of (2.13) we see that

(2.18) sup
d(u,v)≤δ

u,v∈B(u0,ε)∩K

G2(u)−G2(v)
2ω(d(u, v))|G(u0)|

≥ (1− ε′) sup
d(u,v)≤δ

u,v∈B(u0,ε)∩K

|G(u)−G(v)|
ω(d(u, v))

on a set of measure greater than or equal to (1 − ε′). Taking the limit superior as δ → 0

in (2.18) and using (2.7) we see that

lim
δ→0

sup
d(u,v)≤δ

u,v∈B(u0,ε)∩K

G2(u)−G2(v)
2ω(d(u, v))|G(u0)|

≥ (1− ε′)

on a set of measure greater than or equal to (1− ε′) for all ε sufficiently small. Since ε′ is

arbitrary we get (2.16).

Theorem 2.5. Let (S, d) be locally homogeneous, i.e. any two points in S have isometric

neighborhoods in the metric d, and let K ⊂ S be a compact set which is the closure of

its interior. Let G = {G(u), u ∈ S} be a mean zero continuous Gaussian process which

satisfies (2.12) and which has a lower uniform modulus of continuity ω on a compact set

K ⊂ S satisfying (2.3). Then

(2.19) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G2(u)−G2(v)
2ω(d(u, v))

≥ sup
u∈K

|G(u)| a.s.
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Proof. Since K is the closure of it’s interior there exists a u0 ∈ K and an ε > 0 such that

B(u0, ε) ⊂ K. It then follows from the homogeneity of (S, d) that (2.7) is satisfied for this

u0 and this ε. In fact, for every u0 ∈ int K, (2.7) is satisfied for some ε > 0. Using the

homogeneity of S with respect to d, we can follow the proof of Theorem 2.4 to see that

(2.16) holds for all u0 ∈ int K. In particular, if {xj}n
j=1 are points in the interior of K

then

lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G2(u)−G2(v)
2ω(d(u, v))

≥ sup
1≤j≤n

|G(xj)| a.s.

Since this inequality is independent of n, it also holds for {xj}∞j=1 contained in a countable

dense subset of K. Therefore, since G is uniformly continuous on K, we get (2.19).

Theorem 2.6. Let G = {G(u), u ∈ S} be a mean zero continuous Gaussian process which

satisfies (2.12) and which has a uniform modulus of continuity ω on a compact set K ⊂ S.

Then

(2.20) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G2(u)−G2(v)
2ω(d(u, v))

≤ sup
u∈K

|G(u)| a.s.

Proof. This is immediate since

(2.21) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G2(u)−G2(v)
2ω(d(u, v))

≤ lim
δ→0

sup
d(u,v)≤δ
u,v∈K

|G(u)−G(v)|
ω(d(u, v))

lim
δ→0

sup
d(u,v)≤δ
u,v∈K

|G(u) +G(v)|
2

The first term on the right side of the inequality in (2.21) is less than or equal to 1 because

ω is a uniform modulus of continuity for G. The rest is obvious.

Theorem 2.7. Let (S, d) be locally homogeneous, i.e. any two points in S have isometric

neighborhoods in the metric d, and let K ⊂ S be a compact set which is the closure of

its interior. Let G = {G(u), u ∈ S} be a mean zero continuous Gaussian process which

satisfies (2.12) and which has an exact uniform modulus of continuity ω on a compact set

K ⊂ S. Then

(2.22) lim
δ→0

sup
d(u,v)≤δ
u,v∈K

G2(u)−G2(v)
2ω(d(u, v))

= sup
u∈K

|G(u)| a.s.

Proof. We need only note that because ω is an exact uniform modulus of continuity (2.2)

holds with C = 1. This implies (2.3) which enables us to use Theorem 2.5 for the lower

bound in (2.22). The upper bound follows immediately from Theorem 2.6.

The results pertaining to the local modulus of continuity are much simpler.
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Theorem 2.8. Let G = {G(y), y ∈ S} be a mean zero continuous Gaussian process which

satisfies (2.12) and which has an exact local modulus of continuity ρ at a point y0 ∈ S.

Then

(2.23) lim
δ→0

sup
d(y,y0)≤δ

y∈S

|G2(y)−G2(y0)|
2ρ(d(y, y0))

= |G(y0)| a.s.

Furthermore, if ρ is a local modulus of continuity for G, (2.23) holds with a less than or

equal sign and if ρ is a lower local modulus of continuity for G, (2.23) holds with a greater

than or equal sign.

Proof. This is immediate since

(2.24) sup
d(y,y0)≤δ

|G(y)−G(y0)|
ρ(d(y, y0))

(
|G(y0)| −

1
2

sup
d(y,y0)≤δ

|G(y)−G(y0)|

)

≤ sup
d(y,y0)≤δ

|G2(y)−G2(y0)|
2ρ(d(y, y0))

≤ sup
d(y,y0)≤δ

|G(y)−G(y0)|
ρ(d(y, y0))

(
|G(y0)|+

1
2

sup
d(y,y0)≤δ

|G(y)−G(y0)|

)

We see that (2.23) follows by continuity. It is also clear from (2.24) that the one sided

results also hold.

3. Proofs of Theorems 1.1–1.4. We begin by presenting the material necessary to state

part of Lemma 4.3 in [MR]. In the notation of Section 1, let X be a strongly symmetric

standard Markov process and G = {G(u), u ∈ S} be the associated Gaussian process. Let

(ΩG, PG) denote the probability space of G and let L = {Ly
t , (t, y) ∈ R+ × S} be the

local time of S. Let {xi}∞i=1 be a countable dense subset of S and consider {Lxi
t }∞i=1 and

{G(xi)}∞i=1 as R∞ valued random variables. Let C denote the σ–algebra generated by the

cylinder sets of R∞ and τ denote Lebesgue measure on R+. The following Lemma is taken

from Lemma 4.3, [MR].

Lemma 3.1. Let B ∈ C be such that PG(G2( · )/2 ∈ B) = 1. Then for almost all ω′ ∈ ΩG

with respect to PG

(3.1) P x

(
L·t +

G2( · , ω′)
2

∈ B for almost all t ∈ [0, ζ)
)

= 1

Remark 3.2. Suppose G has a version with continuous sample paths on (S,d). Then by

Theorem I, [MR] we can find a continuous version for L on (S, d). Clearly, in this case,
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Lemma 3.1 holds for the continuous versions. By hypotheses the Gaussian processes con-

sidered in Theorems 1.1–1.4 are continuous and the corresponding local times will be taken

to be the continuous versions.

Proof of Theorem 1.1. LetG be defined on the probability space (ΩG, PG). SinceG satisfies

(2.12), by Lemma 3.1, Remark 3.2 and Theorem 2.8, we have that for almost all ω′ ∈ ΩG

with respect to PG

(3.2) lim
δ→0

sup
d(y,y0)≤δ

y∈S

|Ly
t − Ly0

t + 1
2

(
G2(y, ω′)−G2(y0, ω′)

)
|

ρ(d(y, y0))
=
√

2 |Ly0
t +

G2(y0, ω′)
2

|1/2

for almost all t ∈ [0, ζ) almost surely with respect to P x. (We obtain (3.2) by replacing

G2( · )/2 by L·t + G2( · )/2 in (2.23)). It follows from (3.2) and (2.23) that for almost all

ω′ ∈ ΩG with respect to PG

(3.3) lim
δ→0

sup
d(y,y0)≤δ

y∈S

|Ly
t − Ly0

t |
ρ(d(y, y0))

≤
√

2 |Ly0
t +

G2(y0, ω′)
2

|1/2 + |G(y0, ω′)|

for almost all t ∈ [0, ζ) almost surely with respect to P x. Note that G(y0) is a mean zero

normal random variable with finite variance. Hence, given ε > 0, we can choose ω′ so that

|G(y0, ω′)| < ε. Thus we get (1.5) with a less than or equal sign. A similar argument gives

the opposite inequality in (1.5). It is also clear from this proof that if ρ is a local modulus

of continuity for G then we get (1.5) with a less than or equal sign.

In order to prove Theorems 1.2 and 1.4 we need the following lemma about continuous

Gaussian processes.

Lemma 3.3. Let G = {G(y), y ∈ K}, K a compact separable metric space, be a mean

zero Gaussian process with continuous sample paths. Then for all ε > 0, we have

(3.4) P (sup
y∈K

|G(y)| ≤ ε) > 0

Proof. Consider the Karhunen–Loeve expansion of G

(3.5) G(y) =
∞∑

j=1

ξjφj(y) y ∈ K

where {ξj}∞j=1 are independent normal random variables with mean 0 and variance 1 and

{φj( · )}∞j=1 are continuous functions on K, as described in Theorem 2.6, [MR]. Since G is
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continuous, it follows from this Theorem that the series in (3.5) converges uniformly on

K. Hence given any ε1 > 0 we can find an N(ε1) such that

(3.6) E sup
y∈K

|
∞∑

j=N(ε1)+1

ξjφj(y)| < ε1

Let ‖ · ‖ denote the sup–norm on C(K), then

P (‖
∞∑

j=1

ξjφj‖ ≤ ε) ≥ P (‖
N(ε1)∑
j=1

ξjφj‖ ≤
ε

2
)(1− P (‖

∞∑
j=N(ε1)+1

ξjφj‖ >
ε

2
))

Thus if ε1 = ε/4, we get from (3.6) and Chebysev’s Inequality, that

(3.7) P (‖
∞∑

j=1

ξjφj‖ ≤ ε) ≥ 1
2
P (‖

N(ε1)∑
j=1

ξjφj‖ ≤ ε/2)

It is easy to see that this last probability is stictly positive since the φj are bounded on

K and the {ξj}N(ε1)
j=1 are simply a collection of independent normal random variables with

mean zero and variance one. Clearly (3.4) follows from (3.7).

Proof of Theorem 1.2. The proof of this Theorem follows precisely the proof of Theorem

1.1 except that Lemma 3.1 and Remark 3.2 are applied to Theorem 2.6 and instead of

(3.3) we get that for all ω′ ∈ ΩG with respect to PG

(3.8) lim
δ→0

sup
d(x,y)≤δ

x,y∈K

|Lx
t − Ly

t |
ω(d(x, y))

≤ sup
y∈K

√
2 |Ly

t +
G2(y, ω′)

2
|1/2 + sup

y∈K
|G(y, ω′)|

We see that (1.6) now follows by Lemma 3.3.

Proof of Theorem 1.3. The proof of this Theorem is precisely the same as the proof of

Theorem X except that Lemma 3.1 and Remark 3.2 are applied to Theorem 2.4, which

along with Theorem 2.6 gives us that for almost all ω′ ∈ ΩG with respect to PG

(3.9) lim
δ→0

sup
d(x,y)≤δ

x,y∈K

|Lx
t − Ly

t |
ω(d(x, y))

≥
√

2 |Ly0
t +

G2(y0, ω′)
2

|1/2 − sup
y∈K

|G(y, ω′)|

Using Lemma 3.3 we get (1.7).

Proof of Theorem 1.4. The upper bound in (1.8) is given in Theorem 1.2. The lower bound

uses Lemma 3.1 and Remark 3.2 applied to Theorem 2.7 and Lemma 3.3, as in the proof

of Theorem 1.2.
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Remark 3.4. In this paper we made the simplifying assumption that the given metric ρ

and d induce the same topology on S. (This is the case in all the examples that we know).

Because we are lifting results from the theory of Gaussian processes and applying them to

the the study of local times our results are stated in terms of d. The simplifying assumption

guarantees that (S, d) is also locally compact and separable. Let us now consider the

general case in which we just consider the given metric space (S, ρ). Since we are studying

moduli of continuity we naturally assume that {Ly
t , y ∈ S} is continuous for some t, and

hence for all t by Theorem VII [MR]. With this assumption we have by Theorem 3.7 [MR]

that d is continuous on (S, ρ). We now see that all our results on the uniform moduli of

continuity hold without modification. This is because, by it’s very nature, results on the

uniform modulus of continuity relate to a compact subset of S, (e.g. K in (1.3)) and ρ

and d induce the same topology on a compact subset of (S, ρ). In order to consider local

moduli of continuity in the general case we make a minor adjustment in the statement of

our results. In (1.4), and all similar expressions about local moduli, we replace y ∈ S by

y ∈ K, for K a compact subset of (S, ρ). This is really no restriction in considering local

moduli since (S, ρ) is locally compact.

4. Necessary and sufficient conditions for moduli of continuity of Gaussian

processes. In this paper we show how results about the moduli of continuity of the local

times of strongly symmetric standard Markov processes can be obtained from correspond-

ing properties of Gaussian processes. The main point of all this is that, in most cases,

necessary and sufficient conditions are known for these properties of the Gaussian pro-

cesses and therefore we now have them for the local times. We will survey some of these

conditions for Gaussian processes in this Section.

There are two aspects to the consideration of the moduli of continuity of Gaussian

processes. First we have the question of their existence and then the problem of estimating

them. Not all Gaussian processes have local or uniform moduli of continuity. The process

G(y) = gy, y ∈ [0, 1], where g is a normal random variable with mean zero and variance

one has neither since |G(x)−G(y)|/|x− y| = |g| for x, y ∈ [0, 1]. The next theorem gives a

necessary and sufficient condition for the existence of an exact local modulus of continuity

and an exact uniform modulus of continuity for a Gaussian process. The major portion of

the theorem, (4.6) and (4.7), is due to Fernique [F1].

Let {X(z), z ∈ S} be a separable Gaussian process where S is an arbitrary index set.

The median of supz∈S |X(z)| is well defined. It is the real number m satisfying both

(4.1) P (sup
z∈S

|X(z)| ≤ m) ≥ 1
2

and P (sup
z∈S

|X(z)| ≥ m) ≥ 1
2
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Moreover,

(4.2) |E sup
z∈S

|X(z)| −m| ≤ σ

√
2
π

where

(4.3) σ = sup
z∈S

(
E(X(z))2

)1/2

(For details see Remark 2.3, [MR] and material that follows it).

Theorem 4.1. Let G = {G(y), y ∈ K}, (K, d) a compact metric space, be a mean zero

Gaussian process with continuous sample paths. For δ > 0 let

(4.4) m(δ) = median of sup
d(y,y0)≥δ

y∈K

|G(y)−G(y0)|
d(y, y0)

for some fixed y0 ∈ K and

(4.5) m̂(δ) = median of sup
d(x,y)≥δ
x,y∈K

G(x)−G(y)
d(x, y)

Then

(4.6) If limδ→0m(δ) = ∞, ρ(δ) = δm(δ) is an exact local modulus of continuity for G.

(4.7) If limδ→0 m̂(δ) = ∞, ω(δ) = δm̂(δ) is an exact uniform modulus of continuity for

G.

(4.8) If m(δ) is bounded, G does not have an exact local modulus of continuity.

(4.9) If m̂(δ) is bounded, G does not have an exact uniform modulus of continuity.

Proof. The statements in (4.6) and (4.7) follow immediately from Corollaries 3.24 and 3.23

respectively in [F1]. These Corollaries are expressed in a slightly different way but it is

clear that they are equivalent to (4.6) and (4.7).

To obtain (4.9) let us assume that m̂(δ) is bounded but that G does have an exact

uniform modulus of continuity ω, i.e. that (1.3) holds. The condition that m̂(δ) is bounded

implies that there exists a constant C such that for all 0 < δ < δ′, for some δ′ > 0

(4.10) E

 sup
d(x,y)≥δ
x,y∈K

G(x)−G(y)
d(x, y)

 ≤ C
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(To see this we use (4.2) applied to the process (G(x) − G(y))/d(x, y). We note that in

this case the parameter σ, defined in (4.3), is equal to 1). It follows from (4.10) and the

Monotone Convergence Theorem that

E

 lim
δ→0

sup
d(x,y)=δ
x,y∈K

G(x)−G(y)
δ

 ≤ C

and hence that

(4.11) lim
δ→0

sup
d(x,y)=δ
x,y∈K

G(x)−G(y)
δ

<∞ a.s.

But now, writing

lim
δ→0

sup
d(x,y)=δ
x,y∈K

G(x)−G(y)
ω(δ)

= lim
δ→0

sup
d(x,y)=δ
x,y∈K

G(x)−G(y)
δ

δ

ω(δ)

and using (4.11) and (2.3), which follows by our assumption that ω is an exact uniform

modulus of continuity, we get that

lim
δ→0

sup
d(x,y)=δ
x,y∈K

G(x)−G(y)
ω(δ)

= 0 a.s.

which contradicts the assumption that ω is an exact uniform modulus of continuity. Thus

we have established (4.9).

The proof of (4.8) is exactly the same as the proof of (4.9) except that we need the fact

that if ρ is an exact local modulus of continuity for G then it satisfies the analogue of (2.3)

for the local modulus. The proof of this fact is similar to the proof that (2.2) implies (2.3)

in Lemma 2.1 but with ω replaced by ρ.

We next present another result of Fernique [F1, Theorem 3.25] which gives local and

uniform moduli of continuity of Gaussian processes in terms of more familiar quantities

than m(δ) and m̂(δ).

Theorem 4.2. Let G = {G(y), y ∈ K}, (K, d) a compact metric space, be a mean zero

Gaussian process with continuous sample paths. For δ > 0 set

(4.12) fy0(δ) = median of sup
d(y,y0)≤δ

y∈K

|G(y)−G(y0)|

for some fixed y0 ∈ K and

(4.13) f(δ) = median of sup
d(x,y)≤δ
x,y∈K

G(x)−G(y)
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Then, for all y0 ∈ K

(4.14) lim
δ→0

sup
d(y,y0)≤δ

y∈K

|G(y)−G(y0)|
fy0(d(y, y0)) + d(y, y0)(2 log log 1/fy0(d(y, y0)))1/2

≤ 1 a.s.

and

(4.15) lim
δ→0

sup
d(x,y)≤δ
x,y∈K

G(x)−G(y)
f(d(x, y)) + d(x, y)(2 log log 1/f(d(x, y)))1/2

≤ 1 a.s.

Theorem 4.2 shows how to estimate uniform and local moduli of continuity for Gaussian

processes. Note that it follows from (4.2) that

(4.16) |E sup
d(y,y0)≤δ

y∈K

|G(y)−G(y0)| − fy0(δ)| ≤ δ
√

2
π

and

(4.17) |E sup
d(x,y)≤δ
x,y∈K

(G(x)−G(y))− f(δ)| ≤ δ
√

2
π

and as we remarked above, δ = o(f(δ)) if f(δ) is a uniform modulus of continuity for G,

and similarly for fy0 . Thus, very often, we can work with expectations rather than with

the median.

Generally, continuity of Gaussian processes is proved by giving an upper bound for the

expectation in (4.17). By a result of Fernique [F, Sec. 6], (see also [T, Theorem 17]), we

have that

(4.18) E sup
d(x,y)≤δ
x,y∈K

G(x)−G(y) ≤ C sup
y∈K

∫ δ

0

(
log

1
m(B(y, ε))

)1/2

dε

for all probability measures m on (K, d). In this inequality and in the one that follows C

is an absolute constant, not necessarily the same in each case.

In terms of metric entropy we have the following extension of Dudley’s [Du] sufficient

condition for the continuity of Gaussian processes, (see also [MP, II Theorem 3.1]).

(4.19) E sup
d(x,y)≤δ
x,y∈K

G(x)−G(y) ≤ C

(∫ δ

0

(logN(K, ε))1/2 dε+ d̂φ(δ/4d̂)

)

were φ(x) = x(log log 1/x)1/2, d̂ ≡ supx,y∈K d(x, y) and N(k, ε) is the minimum number of

D balls of radius ε that covers K.

The existence of uniform or local moduli of continuity do not imply the existence of an

exact uniform or local modulus of continuity because the limits in (1.3) and (1.4) could

be zero. However, the functions fy0(δ) and f(δ), defined in Theorem 4.2, are often exact

moduli of continuity. The next result is an immediate corollary of Theorem 4.2.
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Theorem 4.3. Let G = {G(y), y ∈ K}, (K, d) a compact metric space, be a mean zero

Gaussian process with continuous sample paths. Let fy0(δ) and f(δ) be as defined in (4.12)

and (4.13). If

(4.20) δ(log log 1/δ)1/2 = o(fy0(δ))

fy0(δ) is an exact local modulus of continuity for G at y0. If

(4.21) δ(log log 1/δ)1/2 = o(f(δ))

f(δ) is an exact uniform modulus of continuity for G.

Proof. It is obvious that fy0(δ) ≥ cδ for some constant c independent of δ and so (4.20)

and (4.14) imply that fy0(δ) is a local modulus of continuity for G. Also, by the definition

of median

P

 sup
d(y,y0)≤δ

y∈S

|G(y)−G(y0)|
fy0(δ)

≥ 1

 ≥ 1
2

This implies that there exists a set Ω′ with PG(Ω′) ≥ 1/2 such that on Ω′

(4.22) lim
δ→0

sup
d(y,y0)≤δ

y∈S

|G(y)−G(y0)|
fy0(δ)

≥ 1

However, by (4.20) and the analogue of (2.3) implies (2.4) for the local modulus, which is

also valid, we see that (4.22) holds almost surely. It is easy to see, since fy0(δ) is monotone,

that (4.22) implies that fy0(δ) is also a lower modulus of continuity for G and hence an

exact modulus of continuity for G. A similar proof gives the result for the exact uniform

modulus of continuity. This completes the proof of Theorem 4.3.

By Theorem 4.2, since f(δ) ≥ cδ, we see that

f(δ) + δ(2 log log 1/δ)1/2

is a uniform modulus of continuity for G. But exact uniform moduli of continuity are often

of the order of δ(2 log 1/δ)1/2 as in [MS, Sec. 3] and [Ba, Theorem 2] so (4.21) of Theorem

4.3 is often satisfied. (Although, it is possible for Gaussian processes to have uniform

moduli on the order of δ(log log 1/δ)1/2, see [M, Sec. 3]). On the other hand exact local

moduli are often on the order of δ(log log 1/δ)1/2 and fy0(δ) is often not a local modulus.

However, there are important examples when it is. We shall say more about this in Section

5.

The next Theorem gives a sufficient condition for a Gaussian process with stationary

increments to have exact moduli of continuity.
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Theorem 4.4. Let G = {G(y), y ∈ I}, I a closed interval of R, be a mean zero continuous

Gaussian process with stationary increments. Assume that d2(x, y) = σ2(|x − y|) where

σ2 is regularly varying at zero with index 0 ≤ α < 2, i.e. σ2(|u|) = |u|αL(|u|) where L is

slowly varying at zero and 0 ≤ α < 2. Then G has an exact uniform modulus of continuity

on [0, 1] and an exact local modulus of continuity at all points of [0, 1].

Proof. We consider the uniform modulus of continuity first. By Theorem 4.1 we need

only show that lim
δ→0

m̂(δ) = ∞ for m̂(δ) as defined in (4.5). Let M,N, ` be integers with

N > M > ` > 1. Consider

(4.23) ξk =
G(k`+1

`N )−G( k
N )

σ( 1
`N )

k = 0, . . . ,M − 1

For j, k = 0, . . . ,M − 1; j 6= k we have

(4.24) Eξjξk =
σ2( |(j−k)`+1|

`N ) + σ2( |(j−k)`−1|
`N )− 2σ2( |j−k|

`N )
2σ2( 1

`N )

where |j − k| < M . Note that since L is slowly varying at zero we have

sup
j,k=0,... ,M−1

a=−1,0,1

∣∣∣∣∣L( |(j−k)+a/`|
N )

L( 1
`N )

∣∣∣∣∣ ≤ 1 + ε′(N)

where lim
N→∞

ε′(N) = 0. Using this in (4.24) we get

(4.25) Eξjξk ≤
3α|α− 1|

(|j − k|`)2−α
+ 5ε′(N)Mα j, k = 0, . . . ,M − 1 j 6= k

for ` sufficiently large. Therefore, given ε > 0 we then take N and ` sufficiently large such

that

(4.26) Eξjξk ≤ ε j, k = 0, . . . ,M − 1 j 6= k

Also, clearly

(4.27) Eξ2k = 1.

Let {ηk}M−1
k=0 and ρ independent normal random variables with mean zero and with Eη2

k =

1− ε, k = 0, . . . ,M − 1 and Eρ2 = ε. Define ρk = ρ+ ηk, k = 0, . . . ,M − 1. Note that

Eξ2k = Eρ2
k = 1 k = 0, . . . ,M − 1

Eξkξj ≤ Eρkρj j, k = 0, . . . ,M − 1 j 6= k
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Therefore, by Slepian’s Lemma (see e.g. [JM, II Lemma 4.3])

(4.28) P ( sup
0≤k≤M−1

ξk > λ) ≥ P ( sup
0≤k≤M−1

ρk > λ)

This last probability is easy to calculate and we see that for M sufficiently large

(4.29) P ( sup
0≤k≤M−1

ξk > (2(1− ε) logM)1/2) ≥ 3/4

It is clear from the definition of ξk that

m̂( 1
`N ) > median of sup0≤k≤M−1 ξk

and so m̂( 1
`N ) ≥ (logM)1/2. But we can take M as large as we like as long as we allow N

to increase. Thus we see that lim
δ→0

m̂(δ) = ∞ which is what we wanted to prove.

The proof that an exact local modulus of continuity exists is similar. Since G is sta-

tionary we need only show this at y = 0. We consider

(4.30) ξ′k =
G(2−(N−k)`)−G(0)

σ(2−(N−k)`)
k = 0, . . . ,M − 1

where, as above, M,N, ` are integers with N > M > `. Because of the assumption of

regular variation we can obtain (4.26) and (4.27) for {ξ′k}
M−1
k=0 and following the above

proof we can show that lim
δ→0

m(δ) = ∞, for m defined in (4.4).

Theorem 4.4 gives a condition for the exact uniform and local modulus of continuity of

a Gaussain process to exist. Moreover, the moduli are given in (4.6) and (4.7). However,

it is generally not clear how to compute them. In the next Section we will obtain more

concrete expressions for the exact moduli of the local times of certain strongly symmetric

standard Markov processes .

There are other ways to describe moduli of continuity for Gaussian processes that also

lead to moduli of continuity for the local times of the associated Markov processes. Let K

be a compact subset of Rn. An increasing function σ̂ for which

(4.31)) d(x, y) ≤ σ̂(|x− y|) ∀x, y ∈ K

is called a monotone majorant for d. For a Gaussian process on R1 the right–hand–side

of (4.19) can be bounded by an integral expression involving a monotone majorant for d

since the metric entropy with respect to d can be bounded by a function of the monotone

majorant. In fact this is how one can derive part of the following result which is given in

[JM, IV Theorem 1.3] for I = [0, 1].
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Theorem 4.5. Let G = {G(y), y ∈ I}, I a closed interval of R, be a mean zero Gaussian

process with continuous sample paths. Let σ̂ satisfy (4.31). Define

(4.32) g(δ) =
∫ 1/2

0

σ̂(δu)
u(log 1/u)1/2

du+ σ̂(δ)(log log 1/δ)1/2

and

(4.33) h(δ) =
∫ δ

0

σ̂(u)
u(log 1/u)1/2

du+ σ̂(δ)(log 1/δ)1/2

Then there exist finite constants C and C ′, independent of I, such that for each y0 ∈ I

(4.34) lim
δ→0

sup
|u|≤δ

y0+u∈I

|G(y0 + u)−G(y0)|
g(δ)

≤ C a.s.

and

(4.35) lim
δ→0

sup
|x−y|≤δ
x,y∈I

|G(x)−G(y)|
h(δ)

≤ C ′ a.s.

Proof. As we remarked above this result is given in [JM, IV Theorem 1.3] for I = [0, 1].

However, it is clear, because of the homogeneity of the condition in (9.18), that the result

is valid for all closed intervals I ⊂ R.

The results in (4.34) and (4.35) are for different types of moduli than those considered

in (1.3) and (1.4). The moduli defined in (1.3) and (1.4) are given in terms of the L2

metric d = d(x, y), defined in (1.2), which determines a mean zero Gaussian process,

(up to a fixed Gaussian variable), and relates it to a local time through the 1–potential

density. One generally wants d to be continuous with respect to the metric on the state

space but, even when this is the case, the relationship between the two metrics can be

very irregular. However, in classical probability, in studying stochastic processes on Rn,

it has been customary to consider moduli with respect to the Euclidean distance on Rn.

Generally, the processes considered are those for which the metric d is nicely behaved in

relation to the Euclidean metric. With respect to the processes considered in Theorem

4.5, if d(x, y) = σ̂(|x− y|) and σ̂, g and h are strictly increasing, the relationships between

the moduli considered in (4.34) and (4.35) and (1.4) and (1.3) are immediate and the two

sets of expressions are equivalent. If these functions are not all strictly increasing but are

fairly smooth with respect to each other, then one can pass between (4.34) and (4.35) and

(1.4) and (1.3) on a case by case basis. However, there is a better way for us to handle the
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different ways in which the moduli are defined. It is to reprove Theorems 1.1–1.4 for the

different types of moduli. Theorems 1.1–1.4 are simple consequences of Lemma 3.1 and

Remark 3.2 applied to events for Gaussian processes that have measure one. The results

in Section 2 which are used to establish the probability one events can also be obtained if

the moduli of continuity are defined in different ways. In particular, using Lemma 3.1 and

Remark 3.2, the almost sure events in (4.34) and (4.35) and obvious analogues of Theorems

2.6 and 2.8, we obtain the following theorem.

Theorem 4.6. Let X be a strongly symmetric standard real valued Markov process with

1–potential density density u1(x, y). Let {Ly
t , (t, y) ∈ R+ × R} be the local time of X and

assume that for x, y ∈ I

(4.36) (u1(x, x) + u1(y, y)− 2u1(x, y))1/2 = d(x, y) ≤ σ̂(|x− y|)

Then for g, h, C and C ′ as given in Theorem 4.5 we have for each y0 ∈ I, that

(4.37) lim
δ→0

sup
|u|≤δ

y0+u∈I

|Ly0+u
t − Ly0

t |
g(δ)

≤
√

2C(Ly0
t )1/2 for almost all t ∈ [0, ζ) a.s.

and

(4.38) lim
δ→0

sup
|x−y|≤δ
x,y∈I

|Lx
t − Ly

t |
h(δ)

≤
√

2C ′ sup
y∈I

(Ly
t )1/2 for almost all t ∈ [0, ζ) a.s.

Here is still another way to define moduli of continuity that is commonly used. Em-

ploying the notation of the paragraph containing (1.3) and (1.4) we call ωm(δ) an exact

uniform m–modulus of continuity for {G(y), y ∈ K} if

(4.39) lim
δ→0

sup
d(x,y)≤δ

x,y∈K

|G(x)−G(y)|
ωm(δ)

= 1 a.s.

We call ρm(δ) an exact local m–modulus of continuity for {G(y), y ∈ S} at some fixed

y0 ∈ S if

(4.40) lim
δ→0

sup
d(y,y0)≤δ

y∈S

|G(y)−G(y0)|
ρm(δ)

= 1 a.s.

As in Section 1 we also define m–moduli and lower m–moduli. We use the expression m–

modulus because ωm(δ) and ρm(δ) can essentially always be taken to be monotone. (To

be more specific, let B denote the range of d(x, y) for x, y ∈ K and assume 0 ∈ B. Assume
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that for u ∈ B, limu→0 ωm(u) = 0 and that there exists an ε > 0 contained in B such

that for all δ ∈ B such that δ > 0, infu∈Bδ,ε
ωm(u) > 0, where Bδ,ε ≡ {B ∩ [δ, ε]}. Then

for 0 ≤ δ ≤ ε, ω̃m(δ) = infu∈Bδ,ε
ωm(u) is monotone and an exact uniform m–modulus of

continuity for {G(y), y ∈ K}. Clearly, we can define ω̃m(δ) arbitrarily for δ > ε. A similar

argument also applies to the exact local m–modulus of continuity).

The moduli ω and ρ, defined in Section 1, are not necessarily monotone. In fact ω and

ρ are highly non–unique since, in many cases, we can take limδ→0 ω(δ) = ∞ and still get

(1.3) and similarly for ρ. Of course one tries to find moduli which are monotone. An

exact uniform modulus of continuity for {G(y), y ∈ K} that is monotone is also an exact

uniform m–modulus of continuity for {G(y), y ∈ K} and similarly for the local moduli.

Furthermore, everything in this paper in Sections 1–3 remain exactly the same if we use

m–moduli throughout instead of moduli. That is, Theorems 1.1–1.4 are valid for m–moduli

as is all of Section 2 which is used to prove these Theorems. We chose the definitions of

uniform and local moduli given in (1.3) and (1.4) because Theorem 4.1 gives us necessary

and sufficient conditions for the existence of the moduli defined in (1.3) and (1.4) but

not for the m–moduli defined in (4.39) and (4.40). However, in all the classical examples

that we know of the moduli are monotone or equivalent to a monotone function so the

distinction between the two definitions have not been important up to now. (One might say

that Paul Levy’s uniform modulus of continuity for Brownian motion is generally writen in

the form of (1.3) rather than (4.39) and so this justifies our choice. However, since Levy’s

modulus is monotone, the two definitions are equivalent).

Another often used expression for the exact uniform modulus of continuity of a stochastic

process is given by writing the expression in (1.3) with d(x, y) ≤ δ replaced by d(x, y) = δ

and the limit replaced by the limit superior. It is easy to see that this is just an equivalent

formulation of (1.3). The same argument applies to the exact modulus defined in (1.4).

5. Real valued Markov processes. We now give some results on the local and uniform

modulus of continuity for local times of real valued Markov processes. Although these

results are not restricted to Lévy processes, many of them are new for Lévy processes.

Theorem 5.1. Let X be a strongly symmetric standard real valued Markov process with

1–potential density density u1(x, y). Let {Ly
t , (t, y) ∈ R+ × R} be the local time of X and

let d(x, y) be as given in (1.2). Suppose that for some δ′ > 0, there exists a non–decreasing

function ρ(δ), δ ∈ [0, δ′] and constants 0 < C0 ≤ C1 < ∞ such that for all x, y ∈ I, a
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closed interval of R,

C0ρ(|x− y|) ≤ d(x, y) ≤ C1ρ(|x− y|) ∀ |x− y| ≤ δ′(5.1)

ρ2(2−n)− ρ2(2−n−1) is non–increasing as n→∞(5.2)

ρ2(2−n) ≤ 2αρ2(2−n−1) for some α < 2 ∀n sufficiently large(5.3)

and

Iρ(δ) ≡
∫ 1/2

0

ρ(δu)
u(log 1/u)1/2

du <∞

Let

ψ(δ) = max
(
Iρ(δ), ρ(δ)(log log 1/δ)1/2

)
Then there exist constants 0 < C2 ≤ C3 <∞ such that for each y0 ∈ I

(5.4) lim
δ→0

sup
|u|≤δ

y0+u∈I

|Ly0+u
t − Ly0

t |
ψ(u)

= C(y0)(L
y0
t )1/2 for almost all t ∈ [0, ζ) a.s.

where C2 ≤ C(y0) ≤ C3.

Proof. By [M] Theorem 3.8, (pg. 303), if {G(x), x ∈ I} is a Gaussian process with metric

d(x, y) then there exist constants 0 < C2 ≤ C3 <∞ such that for each y0 ∈ I

(5.5) C2 ≤ lim
δ→0

sup
|u|≤δ

y0+u∈I

|G(y0 + u)−G(y0)|
ψ(u)

≤ C3 a.s.

(Theorem 3.8 [M] is writen for I = [0, 2π] but can be extended to any closed interval I

by covering I with closed intervals of length 2π). Since (2.3) implies (2.4) is also valid for

the local modulus of continuity, for each y0 the limit in (5.5) is a constant C ′(y0) which,

by (5.5) satisfies C2 ≤ C ′(y0) ≤ C3. By Theorem 1.1, which also holds for this kind of

modulus, we get (5.4).

Corollary 5.2. Continuing the notation of Theorem 5.1, we have the following examples

of functions ρ which satisfy (5.1)–(5.3) and functions ψ̃ for which (5.4) holds with ψ

replaced by ψ̃. The constants C2 and C3 depend on ψ̃.

(5.6) ρ is regularly varying with index greater than 0

ψ̃(u) = ρ(u)(log log 1/|u|)1/2

(5.7) ρ2(u) = exp(−(log 1/|u|)α(log log 1/|u|)β), 0 < α < 1, −∞ < β <∞
ψ̃(u) = ρ(|u|)((log 1/|u|)1−α(log log 1/|u|)−β)1/2
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(5.8) ρ(u) = (log 1/|u|)−α, α > 1/2

ψ̃(u) = ρ(|u|)(log 1/|u|)1/2

(5.9) ρ(u) = ((log 1/|u|)(log log 1/|u|)β)−1/2, β > 2

ψ̃(u) = ρ(|u|)(log 1/|u|)1/2 log log 1/|u|

Proof. In each of the four cases it is straightfoward to verify that ρ satisfies (5.1)–(5.3). We

will show that ψ(u) ≈ ψ̃(u) where we use ψ(u) ≈ g(u) to mean that there exist constants

0 < c ≤ c′ <∞ such that c ≤ ψ(u)/g(u) ≤ c′, for all u ∈ [0, u0] for some u0 > 0. This gives

(5.5) with ψ replaced by ψ̃ and possibly different constants. Nevertheless, this still implies

(5.4) with ψ replaced by ψ̃ just as in the proof of Theorem 5.1. It is easy to check the

approximation for ψ in (5.6). The approximation for ψ given in (5.7) comes from Lemma

3.9 [M]. The approximations for ψ given in (5.8) and (5.9) can be easily calculated using

the following lemma which expresses Iρ(δ) in terms of an integral that is easier to compute.

Lemma 5.3. Let ρ be a non–decreasing function which satisfies (5.3), let

(5.10) φ(δ) =
∫ δ

0

ρ(u)
u(log 1/u)1/2

du

and assume that

(5.11) ρ(δ)(log 1/δ)1/2 = O(φ(δ))

Then φ(δ) ≈ Iρ(δ).

Proof. By (5.3) ρ(2u) ≤ 2αρ(u). Using this we see that

φ(δ) ≤ 2αψ(δ)

The other direction follows from Lemma 4.4 [M].

Of course the above results can be applied to real valued Lévy processes. In the rest

of this paper we will concentrate on these processes. Let {X(t), t ∈ R+} be a real valued

symmetric Lévy process, i.e.

(5.12) E exp(iλX(t)) = exp(−tψ(λ))

where

(5.13) ψ(λ) = 2

∞∫
0

(1− cosλu)ν(du)
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for ν a Levy measure. It is known that X has a local time if and only if (1 + ψ(λ))−1 ∈
L1(R+), (see e.g. [Br] and [K]). It is easy to see, by considering the characteristic function

of X, that when (1 + ψ(λ))−1 ∈ L1(R+)

(5.14) u1(x, y) + u1(y, y)− 2u1(x, y) =
2
π

∞∫
0

1− cosλ(x− y)
1 + ψ(λ)

dλ ≡ σ2(|x− y|)

Thus by (1.2) a symmetric real valued Lévy process is associated with a stationary Gaussian

process for which d(x, y) = σ(|x− y|).
The follwing Lemma shows that for symmetric Lévy processes on the real line, the

function σ2, defined in (5.14), can not be regularly varying with index greater than 1.

Lemma 5.4. Let {X(t), t ∈ R+} be a real valued symmetric Levy process and let ψ and

σ be as defined in (5.13) and (5.14). Then

ψ(λ) = O(λ2) as λ→∞(5.15)

and

x = O(σ2(x)) as x→ 0(5.16)

Proof. (5.15) is well known but we include it because it is used for (5.16). We have

ψ(λ) = 2

∞∫
0

sin2 λx

2
ν(x)

≤ λ2

2

1∫
0

x2ν(dx) + 2

∞∫
1

ν(dx)

which, using properties of the Levy measure ν, gives (5.15). By (5.15) there exist constants

C and λ0 such that ψ(λ) ≤ Cλ2 for all λ ≥ λ0. Let N ≥ λ0 be such that 1/N2 ≤ C. Then

for x < 1/N we have

σ2(x) = C1

∞∫
0

sin2 λx

2
1

1 + ψ(λ)
dλ(5.17)

≥ C2x
2

1/x∫
N

1
1/N2 + C

dλ

≥ C2x
2

2C

(
1
x
−N

)
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where C1 and C2 are strictly positive constants. Clearly, (5.17) implies (5.16).

We now present examples in which we can obtain exact moduli of continuity for some

symmetric Lévy processes. The next theorem gives an exact local modulus of continuity

and complements a similar result of Barlow, [Ba, Theorem 2], which deals with the exact

uniform modulus of continuity.

Theorem 5.5. Let X be a real valued symmetric Lévy process with local time L =

{Ly
t , (t, y) ∈ R+ × R}. Let σ(|u|) be as defined in (5.14), (so that for symmetric Lévy

processes σ(|x− y|) = d(x, y)) and let I be a closed interval of R. Then, if σ2 is regularly

varying with index 0 < α ≤ 1, for each y0 ∈ I

(5.18) lim
δ→0

sup
|u|≤δ

y0+u∈I

|Ly0+u
t − Ly0

t |
(σ2(|u|) log log 1/|u|)1/2

= 2(Ly0
t )1/2 for almost all t a.s.

Proof. This result is a direct consequence of Theorem 1.1 in this paper and Theorems 5

and 6 in [Kô] keeping in mind, as we have remarked above, that Theorem 1.1 is also valid

for the modulus in (5.18) and also that ζ = ∞ for Lévy processes. (In his Theorems 5

and 6 Kôno obtains a version of (1.4) for stationary Gaussian processes with L2 metric

σ2 satisfying the conditions of this Theorem. In fact Kôno’s conditions on σ2 is actually

weaker that the one in the statement of Theorem 5.5. In Theorems 5 and 6 Kôno adds

the condition that σ2 is concave but he only uses the regular variation of σ2 in the parts

of these Theorems that we are using here).

Results of the form of (5.18) can also be obtained in some cases when σ2 is slowly varying

at zero by using the Theorems of Kôno mentioned above or Theorem 6 in [M1]. Moreover,

in dealing with symmetric Lévy processes, the constant C(y0) in (5.4) is independent of

y0, since by (5.14), the Gaussian processes associated with Lévy processes are stationary.

Theorem 5.5 is not completely analagous to Theorem 2 in [Ba] because the latter result

is valid for all t ∈ R+ not just almost all t. Barlow’s Theorem 2 gives a uniform modulus

of continuity for the local time of Lévy processes when σ2 is regularly varying with index

0 < α ≤ 1. We can not get this result by our methods. Our approach is to infer results

for local times from corresponding ones for Gaussian processes. But special properties of

the Gaussian processes associated with Lévy processes seem to be involved in Theorem

2 in [Ba]. We say this because the analogue of Theorem 5.3 in [Ba] is false for Gaussian

processes. Let us be more precise. The approach of this paper is to use results for Gaussian

processes to obtain results for the local times of the associated Markov processes. The result

for Gaussian processes that might give Theorem 5.3 in [Ba] would be that σ(u)(2 log 1/u)1/2
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is a lower uniform modulus of continuity for Gaussian processes for which σ satisfies the

hypotheses of [Ba, Theorem 5.3]. But this is not true as can be seen by the example in

[M]. Clearly, there are special properties of the Gaussian processes which are associated

with Lévy processes that we would need to use to obtain Theorem 5.3 in [Ba]. So far we

have been unable to isolate these properties.

Exact uniform moduli of continuity are known for a wide class of Gaussian processes

with stationary increments. However, all the results we know of require that σ2 be concave

on [0, δ] for some δ > 0. This is not so great a restriction in the study of Gaussian processes

in genreral since for every such function σ2 one can find a stationary Gaussian procees, say

{G(x), x ∈ R}, such that E(G(x + h) − G(x))2 = σ2(h), for h ∈ [0, δ], (see e.g. Chapter

XV.3, Example b [Fe]). However, in general, it is hard to see whether the functions σ2

defined in (5.14) are concave on [0, δ] for some δ > 0. In fact, they are for symmetric stable

processes with index greater than 1. However, we will use a slightly different approach

to obtain exact uniform moduli of continuity for the local times of these processes. Of

course this is contained in [Ba, Theorem 2] but our proof is simple and illustrates a useful

technique of manipulating Gaussian processes. See also [Ba, Theorem 3].

Theorem 5.6. Let X be a symmetric stable process of index 1 < p ≤ 2. In particular,

let ψ(λ) = λp in (5.12). Let {Ly
t , (t, y) ∈ R+ × R} be the local time of X. Then, for I a

closed interval of R

(5.19)

lim
δ→0

sup
|x−y|≤δ
x,y∈I

|Lx
t − Ly

t |
(|x− y|p−1 log 1/|x− y|)1/2

= 2(Cp)1/2 sup
y∈I

(Ly
t )1/2 for almost all t a.s.

where

(5.20) Cp =
2
π

∫ ∞

0

(1− cos y)
yp

dy

Proof. The proof follows immediately from Theorem 1.4, which also holds for this kind of

modulus, (see the remarks following the proof of Theorem 4.5), and the fact that

(5.21) (2Cp|x− y|p−1 log 1/|x− y|)1/2

is an exact uniform modulus of continuity for the stationary Gaussian process {Gp(x), x ∈
I} for which

σ2
p(|x− y|) = E(Gp(x)−Gp(y))2 =

2
π

∞∫
0

1− cosλ(x− y)
1 + λp

dλ



29

To see this we introduce two Gaussian processes with stationary increments, Gp,i(x), x ∈
I}, i = 1, 2, defined by

(5.22) Gp,i(x) =
1√
π

(∫ ∞

0

(1− cosλx)fi(λ) dB(λ) +
∫ ∞

0

sinλxfi(λ) dB′(λ)
)

where

f1(λ) =
1

λp/2
and f2(λ) =

1
(λp(1 + λp))1/2

and B and B′ are independent Brownian motions. Let Gp, Gp,1 and Gp,2 be independent

and note that Gp,1(x) and Gp(x) − Gp(0) + Gp,2(x) are equivalent Gaussian processes.

(They have the same covariance). Furthermore, we see by a change of variables that

E(Gp,1(x+ h)−Gp,1(x))2 =
2
π

∞∫
0

1− cosλh
λp

dλ = Cph
p−1

It follows from [M1, Theorem 7] that (5.21) is an exact uniform modulus of continuity fro

Gp,1. (The Theorem just cited is writen for I = [0, 1]. It is easy to see, by a change of scale

that it is valid for any closed interval I). Therefore, (5.21) is an exact uniform modulus

of continuity for Gp(x) − Gp(0) + Gp,2(x). However, by Theorem 4.5 the term in Gp,2 is

“little o” of this modulus. Thus (5.21) is an exact uniform modulus of continuity for Gp,

which is what we wanted to show. This completes the proof of Theorem 5.6.

Using Theorem 5.1 we can obtain some information about the uniform modulus of

continuity of the local time of symmetric Lévy processes that is not contained in [Ba].

Theorem 5.7. Let X be a symmetric Lévy process and let {Ly
t , (t, y) ∈ R+ × R} be the

local time of X. Assume that

C0ρ(|x− y|) ≤ σ(|x− y|) ≤ C1ρ(|x− y|) ∀ |x− y| ≤ δ′

for some δ′ > 0 where ρ is as given in Theorem 5.1 and also satisfies (5.2) and (5.3) and

σ is given in (5.14). Let φ(δ) be as defined in (5.10) and assume that (5.11) holds. Let I

be a closed interval of R. Then there exists a constant 0 < C <∞, independent of I, such

that

(5.23) lim
δ→0

sup
|x−y|≤δ
x,y∈I

|Lx
t − Ly

t |
φ(|x− y|)

= C sup
y∈I

(Ly
t )1/2 for almost all t a.s.

In particular if

ρ(δ) = (log 1/δ)−α α > 1/2
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then

(5.24) lim
δ→0

sup
|x−y|≤δ
x,y∈I

|Lx
t − Ly

t |
ρ(|x− y|)(log 1/|x− y|)1/2

= C sup
y∈I

(Ly
t )1/2

for almost all t a.s.

and if

ρ(δ) = ((log 1/|δ|)(log log 1/|δ|)β)−1/2 β > 2

then

(5.25) lim
δ→0

sup
|x−y|≤δ
x,y∈I

|Lx
t − Ly

t |
ρ(|x− y|)((log 1/|x− y|) log log 1/|x− y|)1/2

= C sup
y∈I

(Ly
t )1/2

for almost all t a.s.

(The constants C are not necessarily the same).

Proof. Fix an interval I and let {G(x), x ∈ I} be a mean zero Gaussian process with

E(G(x)−G(y))2 = σ2(|x− y|). It follows from Theorem 4.5, (5.11) and the fact that φ(δ)

is monotone that

(5.26) lim
δ→0

sup
|x−y|≤δ
x,y∈I

|G(x)−G(y)|
φ(|x− y|)

≤ D1 a.s.

for some constant D1 <∞. Also the limit superior in (5.26) is greater than or equal to a

constant D2 > 0, since by Lemma 5.3 we get (5.5) with ψ replaced by φ and, of course, the

uniform modulus is greater than the local modulus. It now follows from Lemma 2.1 that the

limit superior in (5.26) is equal to a constant and it is clear, because of the homogeneity of

the condition on σ, that this constant is independent of I. We then get (5.23) by Theorem

1.4, which also holds for this kind of modulus, since the Gaussian processes associated with

Lévy processes are stationary. (5.24) and (5.25) follow from (5.23).

In the above discussion of moduli of continuity we have confined our attention to the

real line because the 1–potential density of Lévy processes on R2 is not finite. However,

there are examples of Markov processes on R2 with continuous local times, such as in the

recent work of Barlow and Bass [BB] on the Sierpinski carpet. All the results on moduli

of continuity in this Section can be extended to Rn whenever the local time is continuous.
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1983, Birkhäuser, Basel.

Du Dudley, R.M. Sample functions of the Gaussian process, Ann. Probab. 1, 1973,
66–103.
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