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A JOINTLY CONTINUOUS LOCAL TIME FOR
TRIPLE INTERSECTIONS OF A STABLE PROCESS
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We study the asymptotics of the triple intersection local time x(x, y,t) for the symmetric stable
process X, of index f>% in R* as x, y—0. This describes the set of “near-intersections”,
fr<s<t<TIX,—X.=x, X,—X,=y}. With Ulx)= dB)/1x|*~* we show that alx,y, T)—
TU(x)U(y) — U(x)a(y, T) — U(y)é(x, T) has a continuous extension, where &(x, T) is a continuous function,
the renormalized local time for double intersections.
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1 INTRODUCTION

Let X, be a symmetric stable process of index f in the plane, with density

pix) = '[ei‘""e"‘”" d3q. (1.1)

1
(2m)?

When f = 2, X, is a Brownian motion.
We will use the notation X(r, s) = X, — X,. If § > %, then the random field

Y(r, s, t) = (X(r, 5), X(s, 1))

has a local time over any bounded Borel set B< R = {(r, s, 1)|0 <r <s <t}, ie.
there exists a function «(x, y, B) such that

J‘ f(Y(r, s, 1)) dr ds dt = Jf(x, y)(x, y, B) d*x d*y, (1.2)
B

* This work was done while visiting at the Courant Institute of Mathematical Sciences, New York
University. Partially supported by NSF DMS 8602651.
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120 J. ROSEN

for all bounded Borel functions f: R* — R. In addition, when B lies away from both
diagonals r = s, s = t, we can take x(x, y, B) to be a measure in the set variable B,
and weakly continuous in x, y. The measure «(0, 0, -) is supported on :

{(r, s, 01X, = X, =X,}.

Because of this, we call a(x, y, B) a triple intersection local time. The results above
are essentially due to Shieh [1986], and in Section 7 we shall review them.

In this paper we remove the restriction that B lies away from the diagonals, and
study the behavior of a(x, y, B) for arbitrary bounded Borel sets B < R, 1t will turn
out that for > £, we can choose a version of a(x, y, B) which is a measure in B,
weakly continuous in x, y # (0, 0), see Section 6. In general, a(x, y, B) “blows up”
as x, y— 0. Let

Br={r,sn0<r<s<t<T}

and with ¢(f) = (1/2°m)T(2 — B/2)/T(B/2), let

U(x)=j 'p;(x)dr=|xcl(—flﬂ, p<2

0

the potential of our process. The main result of this paper, established in Section 5,
is that with a(x, y, T) = a(x, y, By), f > &,

ax, y, T) — TUx)U(y) — Ux)a(y, T) — U(y)alx, T) (1.3)

has a continuous extension to all x, y, T. Here &(x, T) is the continuous version of
the renormalized intersection local time for double intersections, see Rosen (1988).
It is defined by the a.s. limit

T it
4(x, T) = lim J j P (X, — X,) ds dt — TU(x),

e—=0 JO 0

where p, (a) = p,(x — a) and U,(x) = [ p,(x) dr. Thus (1.3) isolates the singularity of

a(x, y, T) as x, y — 0. We note that (1.3) has recently been established for the case

f = 2, Brownian motion in the plane, using stochastic integrals, Rosen-Yor [1991].
To establish (1.3) for all # > % we study the functional

I(e, x, y, B) = j {Pe, (X (1, $)}olpe (X (s, 1)} dr ds dt, (1.4)

B

where for any random variable Z we use the notation {Z}, = Z — E(Z). In Sections
2 and 3 we will show that with probability 1, I(s, x, y, B) has a limit I(x, y, B) as ¢ = 0,
which we call the renormalized triple intersection local time. We will show that
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I(x, y, T) = I(x, y, By) is jointly continuous in (x, y, T) and, modulo a regular term,
is equal to (1.3).
Along the way we will find a nice approximation to I(x, y, By). Let

@ 2n=I

b= U Ak n,2), (1.4)

n=1k=1

%—2 2%k—1] [2k—1 2%
Al m, D) = | ==, = | x| = 3 |

where

[a b2 = {(s.)la<s<t<b},

and

G ZO Alk, n, 1),

a=1l k=1

2k—2 2k—1P 2k —1 2k
A(ks n, 1)=[ on L] 2" :l X[zns 2"},

We note that B, = D(1) u D(2). To see this, if (r, 5, 1) € By, take n to be the smallest
place in which the dyadic expansions of r, s, and ¢ differ.

We now describe the approximation we will use for I(x, y, D(2)). There will be an
analogous approximation for I(x, y, D(1)). Let

D(1)

2n—1

N
DR, N, My= ) | Ak, n, M, 2) (1.5)

n=1 k=1

2k—2 2k—1 2k—1 2k—1
e [B Bt [ B
@ f2ar—=2 20—1 21—-1 21
SO0

In Section 4 we will show that

I(x, y, D(2, N, M)) = I(x, y, D(2))

in all L? spaces, and as., as N, M — oo.
Itis a pleasure to thank J.-F. Le Gall for suggesting the basic idea of using scaling.



122 J. ROSEN
2 SCALING

The next two sections will be concerned with proving

THEOREM | Let > &, then for any bounded Borel set B < R,
|I(e, x, y, B)—I(¢, X', y', B)| < cl(&, x, y) — (&, x', Y, (2.1)

for some y > 0, locally in x, X', y', y" and &, & > 0, a.s. (2.1) is uniform over all B in any
bounded region of R.

Since I(s, x, y, B) is clearly continuous in x, y, (2.1) will guarantee the existence of a
limit
I(x, y, B) = lim I(g, x, y, B)

e=0

which is continuous in x, y. In Section 4 we will discuss the behavior of I(x, y, B) as a
function of the set variable B.

Formula (2.1) will come from applying the multiparameter version of Kolmogor-
ov’s lemma, Meyer [1980], p. 116 to the bound

E((e, x, y, B)— I, X', y, B)" < Cyl(e, x, y) — (&, X', y)II"™, (22)

which we now establish for some y > 0 independent of m. Here C,, will be independent
of the parameters ¢, &/, xX'x', y, .

It suffices to consider B < B, = D(1) v D(2), and by symmetry we can assume
B = D(2). Let us define

J(e, x, y, B) = J Pe. o X(r, P, (X (s, 1)} dr ds dt (2.3)
B
K(e, x, y, B) = J E(p, (X (r, )){p. (X, 0)}, dr ds dt (2.4)
B

so that I = J — K. We will establish bounds of the form (2.2) separately for J and K,
and here scaling will play a crucial role. We work with J, as K will be similar and
actually easier.

In the next section we will show that uniformly for all Borel sets B < A(1, 1, 2) =

[0, 3] x [31]%,
I9(e, x, y, B) = J(&', X', ¥, B)llw < el x, y) — (', X5 V)" (2:5)
for all m, and all y sufficiently small (independent of m). Now use the scaling

X, ~c'"X, where ~ denotes equivalence in (2.6)
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law of stochastic processes in ¢, and

pz( y/k) = kzpckﬂ{y)!

to see that in distribution

r s s
Jie, x,y,By=2"3" Ll Xl == il X =, = dr ds dt
e Lm“( @"?D%“((erh M
dist o X(r,s) X(s, 1)
=2 3 J. pe.x( zn,iﬁ ){pﬂd( 2,,“; )} dr ds dl
2B 0

= 2= 3n+dnif jong 0By, 2MBy. 2*B).

If B < D(2), write B(k, n) = B n A(k, n, 2) so that

B = D ZO Bk, n).

n=1 k=1

Note that 2"~ 'B(k, n) € A(1, 1, 2) so that using (2.5) and (2.7) we have

HJ(S! X, ¥, B) = J(E" x's J""ﬂ B}”m

w 2n-)
= Z Z J(e, x, y; B(k, n)) — J(&', x', ', Bk, n)
n=1k=1 m
@© 2n=1
< Y || X JG x, y, Bk, n)) — J(&, x', ¥, B(k, n))
n=11lk=1 m

IA

Y 2"V sup|J(e, x, v, Bk, n) — J(€, X', y', Bk, n),,
n=1 k

n=

— J(2" g, 2 VB 2=y 2n=1B(k, n))|,.
= Cm(?)( Z 2N =He ”Z'f')i(e, x, y) — (&, x, y)I’
n=1

< (.-'m(}’)”(é,‘, X, y) = (8,’ x'v y’)”Tv

if we can choose y > 0 so small that

+7y<3,

B | =

+

= &

= Z 2= DE-4p-1/2) Sup||J(2"7‘a, 2(v1fl)f.ﬂx1 2(n71)/ﬂy’ 2""B(k, n))
1 k

123
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This holds as long as f > £. In the second inequality of (2.8) we used the fact that for
fixed n, the J(e, x, y, B(k,n)), 0 < k < 2"~ ! are independent with mean zero.

3 THE MAIN ESTIMATE
In this section we prove (2.5). We begin by establishing a bound on
E(J(e, x, y, B)™,

where J is defined in (2.5) and which is uniform in x, y, B < [0, 4] x [}, 1]% and ¢ > 0.
Recalling (1.1) we write.

E(J(e, x, v, B™) = (211%‘ Lm JF(&, X, ¥, p, q)E(e=PX 1'% ) dp dq dr ds dt
(3.1)

with
Fle, x, v, p, q) = e Lertiy Ta—eLrf+Lafy (3.2)

where here and in the sequel we use the notation p” for |p|".
First, by independence of increments.

E(e'ZP Xri5)giZa  Xs.0)) — E(e'Zp Xt D) E(gi X X(1/2.8) +iLq X5 ) (3.3)

To evaluate (3.3) we rewrite
z p;X(r;, 1/2) = Z P X(Fs Fiei 1),
k=1

where 7,, Fy,..., 4, are the points ry, r5,...,r,, 1/2 in their natural order, and
Px = 2ij=r,<ry P;- Note that {p,} generates {p;} in the sense of linear algebra, i.c. every
p; can be written as a linear combination of the p,’s. Similarly, we rewrite

2m
Z ij(l/Z, 5;) + Z q;X(s;, ?,‘) = Z u X(dy, dy s y)
i=1

where d,, ..., d,, ., are the points 1/2, s, ..., s,, ty, ..., L,, in their natural order and

U, = Elﬂs_::‘dk, pJ’ * Z“:stdk'(ﬂ'l qf‘
We note that u, =) 7-, p;, and

W = Ja— B if dy=s5,
) e —4qr if dy=1
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while u,,,,; = 0. This shows that {u,} generates {p;} U {g,}. The expression in (3.3)
can now be rewritten as

e~ Llhg—Luldk (3.4)

here 7#; = r;,, — 7; and d,=d,,, —d,.

We will call g, an isolated variable if [s;, t,] is of the form [d,, d, ] for some k,
in which case the interval will be referred to as an isolated interval. In such a case
g, appears as a summand of ; if and only if i = k. We set I = {k|[d,,d, ] isisolated}.

Of course, (3.3) differs from the expectation in (3.1) in that all brackets have been
removed. It will suffice to restrict our attention in (3.1) to integrating over a subset
of B™in which #y, ..., Fyy S1yevvs Sps b1, -« L,y have a fixed relative ordering. We restore
the brackets of (3.3) to (3.1) in two steps. In the first step we insert all brackets
corresponding to isolated variables, which changes (3.4) to

e ,Z,:,{lf,e—§u£?ph l—[ (efu{fik —e o+ q#kg)‘]k), (3.5)
kel

where gy, is the isolated variable corresponding to [d, d; 1. Thus w, = w4y + gy,
Uy = Ugs1 + Pigye

In the second step we expand the product in (3.1) over all brackets corresponding
to nonisolated variables, and obtain many terms-one of which will be (3.5). We will
explain in detail how to handle (3.5}—the other terms can be handled similarly—and
in fact will be easier.

In finding a bound for the right-hand member of (3.1), we use the absolute value
of (3.5) times |F| <1 as a bound for the integrand, and replace the domain of
integration by a convenient super set.

We first discuss the isolated variables. By arguing separately on the region
(u+qf =u’ + q" and (u + g/ < v’ + ¢* we see that

1
W+qf W +g

x
J\ ‘e*:tu+qlf‘ o e*!{u’“rqi")l dt <
0

We then integrate with respect to the isolated variable g. For the present we make
use of the following bound in the case y = 0.

J‘q}‘ dzq S J‘ + J\
lq| <4u| lul<|ql/4

1 u
<cu’ j — d’q+c J‘ " L lul d*q
lal<sul 4 lal =41l 4]

< Cu?~#*, (3.6)

1 1
w+qf u+4q

for y sufficiently small (y = 0 included).
After bounding in this fashion all terms involving isolated variables, we integrate
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out the remaining ¥ and d using

1
e~ dr < —
o Tl

so that we can bound (3.1) in terms of

J~]_[(1 + 15D P TTA + )" [T wis{ dp dq',
F=1 I

kel
where dg’ is over the remaining, i.e. nonisolated, variables.
We now prove that (3.7) is finite if § > §.
Let
F = {keI‘|d, = s; for some j}

and

Q = (ke I‘|d, = t; for some j with [s;, t;] nonisolated, i.e. k — 1 €I}

(3.7)

We use {u,}, to donote the set {u|ke A}. We can easily verify that {p;} U {u;}y
generates {p;} U {g;}. This is not generally true for {p;} U {u;},. The latter generates
{p;} and all g;,; which appear as summands in any u,, ke Q (see Rosen [1983] for
the simple proof). The only g5 missed are those whose associated interval [s,, 1]
contains no nonisolated t;. Let L denote the set of such [. Since [s,, t,] is nonisolated,
s; = d, implies that d,,, = s, for some j. If k + 1 € I, set w; = u;,,, while if k + 1 e[
set w, = 0. In any event, set v; = u,. Noting that I° is the disjoint union of F, Q, and

I + 1, we can bound (3.7) by

where

F=T1(1+|ul)"*, where 2= {1
F
Q=TI+ v 7?31 + |w) P2 TTA + lu)7?,
L Q

I'= H(l + |”k+1|)_‘2ﬂ_21-
kel

2/3ifu; = v,orw, for some /,
otherwise

(3.8)
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We have

Jﬁﬁéf= J(ﬁUZFA3I4)(ﬁIIZQASH-Ff3)(F1I4Qll4flf3)
< || PYRFYR 5| V@I g o | FYAQAT . (3.9)

The first norm is finite:
Jl_[(l + 1B T (1 + |uy)~#* dp dg’ < o,
F

since the {p,} U {u}; generate and 3f > §3 = 2.
For the second norm we note that both {p,} U (i} U {ufs and {p}u (e v
{v¥}, generate {p;} U {q;} where

U*_{szuk+l if k+1er
T I if k+1lel’
We can thus use the Cauchy-Schwartz inequality, after which we proceed as above.
We need only note that 328 —2) > 3-¢=2.

Finally we note that FQ = [Tk 1.kerq (1 + |u]) "%, while {u,}, ., generates {p;} U
{q;}, and as before (28 — 2) > 2.

Thus we have bounded (3.1) uniformly in ¢, x-y, B < A(l, 1, 2). To prove (2.5) we
write
IJ(e, x, y, B) — J(&, X', y', B)|,w < lJ(e, X, y, B) = J(&, x, y, B)||m

+ |J(, x, y, By = J(£', x', y, B)||,, + |J(£, X, y, BY — J(&, X', ¥, Bl|,n» (3.10)

and bound each term separately. The first term in (3.10), raised to the mth power
differs from (3.1) in that instead of F(e, x, y, p, g) we have

F(s, &, x, y, p, q) = e* 2o L0 [ (e~e0f+ 9 — o=+ o)) (3.11)
j
Instead of bounding | F| by 1 we use the bound
le~ el — =418 g~ & Plal’,
for any 0 < & < 1. Taking ¢ sufficiently small, using (3.6) and the proof above of the
boundedness of (3.1) we find that the first term in (3.10) is bounded by c(5)|e — &'|*™
for all ¢ sufficiently small. The remaining terms in (3.10) are handled similarly using

Ieix~p = ee’x'—pi < Clxldlp‘a,

for all 0 < 6 < 1. This completes the proof of (2.5), and of Theorem 1.
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4 CONTINUITY IN THE SET VARIABLE
PROPOSITION 2 Let > % and B < D (2), then for some y >0
E(J(e, x, y, B)") < Cy(y)| BI'™, (4.1)

with C,(y) independent of B.

Proof As in the proof of Theorem 1, scaling (see Section 2) reduces this to proving
(4.1) for all

B < A(l, 1, 2).

We proceed as in Section 3, arriving at (3.5). Now, however, we treat isolated
intervals differently. Before taking absolute values, we integrate over each isolated
variable ¢: using Parseval for the first equality

‘j(equ;ﬂ - e—uuMq!‘))eiy-q—sq“ dzq

= ’ j(ei“'zp,(Z) — e “p(pfz — y) &’z
& j(“ — &% + |1 —e™"|)pf2Ipdz — y) &z

<c J-(h«!l"lzl's + () )p2)pfz — ) d’z

< ¢ sup (u’z’p(z) + uP't'p(z))

]
z
< cu’ sup o py(z/t'®) + uPrerje?P, (4.2)

where the last inequality uses the scaling (2.6) and the fact that p(z) < p0) =
(¢/t*"). The last member of (4.2) is bounded by

s 1 z z 2y 1
u* in=an WP\ qm ) P\ g ) M e

Note that sup,|z|p,(z) < oo as follows easily from (1.1) and integration by parts.
Take 6 so that (2 — 8)/f < 1,ie. 6 > 2 — f,and y so that 2/f — y < l,ie. fiy > 2 — f.
We see that the last member of (4.2) is bounded by 1/t to a power slightly less than
one, times u to a power slightly larger than 2 — . Now, in the proof of Section 3,
see (3.7), we had u®> #—but we had power to spare! Hence if, after bounding all
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isolated variable integrals as above, we apply Holder’s inequality in the form (with
h > 1, close to 1)

1/h

'[ G(r, s, t, p, q) dr ds dt < IAI”"(-[ Gir, s, t, p. q)" dr ds d!)
A A

we can then follow the path which follows (3.7) in Section 3. This establishes
Proposition 2. O

This quickly leads to a bound for I(e, x, y, B) similar to (4.1).

THEOREM 3 Let f > £, then I(x, y, By) is jointly continuous in x, y, T, with probability
one.

Proof Combining (2.2) with the preceding remark, we have
E(I(e, x, y, By) — I, X', ¥, BY))" < c,(Ml&, x, y, T) — (&, x, y, T)™, (4.3)

for all y sufficiently small and all m, if T, T’ are bounded by some fixed number T.
Our theorem follows from this as before. O

The approximation described in the introduction follows easily from Proposition 2.
THEOREM 4 If 8 > £ then
I(x, y, D(2, n, M)) = I(x, y, D(2))

in all LP-spaces, p > 1, and a.s., as N, M — 0.

5 ASYMPTOTICS OF THE LOCAL TIME

In this section we establish (1.3).

THEOREM 5 If B > &, then we can find a version of the local time o(x, y, T) such that
ax, y, T) — TUX)U(y) — U(x)aly, T) — U(y)alx, T) (5.1)

has a jointly continuous extension to all x, y, T.

Proof We set

ofeg, x, y, T) = J Pe. A X(r, $))p,, (X (s, 1) dr ds dt,
BT
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and recall (1.4); then write out

Ie,x,y, T) = ale, x, 5, T) — '[ E(p, (X (r, )Hp..,(X(s. )}o

Br

= _[ (Do AX(r, )}o E(p, (X(s, 1)) dr ds dt
Br
- J‘ E(p,, (X(r, SHE(p,,(X(s, 1)) dr ds dt. (5.2)
Br
By closure under convolution

E(p,, (X(r, 5))) = jpe(y = X)ps () A2y = Pg—p+(X) (5.3)
so that (5.2) becomes

Ie,x,y, T) = ale, x, y, T) — j Ps—r+oXNPe (X5, D)}o

By

- \[ {p:.x(X(r! S))}Opl—s+s(y) - J' PS*r+¢(x)pt—s+e(y)- (54)
Br

B

We rewrite the last term as

T s T T s T—3
J. (J' ps—r+z(x) dr)(j p!—s+£(y] dt) dS = j (j pr+s(x) dr)(f PH-E(y) d[) dS.
0 0 s 0 0 0

(5.5)

Now use

fspr+¢(x) dr = U x) — Ug, (%)
0

(5.6)
T—=x
J‘ p!+£(y) df - U.c(y) N U?‘—s+r:(y)

(4]
where U,(x) = [[* p(x) dt to rewrite (5.5) as

'[ p51r+z{x}pt-s+z(.V) dr dS dt
Br

T
= j (Ue(x) = Us+e(x))(Ue(.V] . UT+5+¢(,V)} ds

0
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" T
= TU(x)U(y) — Uix) j Ur—s+¥) — UY) J. Us+o(x)
0 0
T
+ J Us+s(x)UT—s+x(y)' (57)
0

It is easily seen that the last term is continuous in all parameters: this follows from

B 1
Ufx) < f 128 dt = W’ (5.8)

and

L | 1 59
| S (T — g ds < o0, (5.9)

similarly we rewrite the second term of (5.4) as

T f*t s
j j (J\ ps—r+£(X) dr){ps,y(X(ss t))}() ds dt
0

= U, f{p,yX(sr ds dt — jf Uy s dX){Pey(X(5. D))o ds dt

= Us(x j X(Sa t)) P:—s+z(}’)) dS dt

- J\ j s+c(x}{pz.y(X(S t})}O ds dt
0 1]

T t
- UJX)U J Pe(X(s, 1)) ds dt — TUE(y))
0 0

T T [t
s Ue(x) j UT—s+£(y] dS s J. j Us+£{x){p£.y(x[si r))}0 dS dt (5'10)

0 0 0

Introduce

T 1
(e, x, T) = j '[ Do X(s, 1)) ds dt — TU (x)
0

0

T it
(e, x, y, T) = j j Ugt X1 pe (X (s, D))o ds dt

0 0

T s
#e, x, y, T) = f J {Pe. (X(r, s)}oUq 51 (¥) dr ds.

0 JO



132 J. ROSEN
Using (5.4), (5.7), (5.10) we can write

I, x, 3, T) = oe, x, y, T) = TUU(y) — Ux)dle, y, T) — U(y)ile, x, T)
T

+ale, x, y, T) + ale, x, y, T) — .[ U gy ds.  (5:11)

0

We have already seen that the last term is continuous in all parameters. We will
show this now for & and & which will complete the proof of Theorem 5—once we
identify lim,_, a(e, x, y, T) as the local time of y.

We concentrate on 4. The proof will be similar to that of Theorem 3. We introduce

#e, x, y, B) = '[ Ui ){Pe X (s, D)o ds dt,

B

and using Section 2 we have the scaling

e, x, y,B) =27*" f Usjans dXHPe (X (s/2", £/27)} ds dt

2"B

ist X 51
d= 2_2" j Usf2"+£(x){pa.y( 2(n!ﬂ ))} ds dt
2"B 0

. 2*3”*4";3&(2”8, 2By, 2m‘ﬁy, 2"B).

Writing
w 27!

D<s<t<1y= ) [J Ak n),

n=1k=1

with

dk—2 2%k—17 [2k—1 2
Alem === [*| 7 2|

we see exactly as before that it sufficies to show for some y > 0

E(a(e, x, y, B) — d(¢, X', ¥, B)" < c(D)l(e, x, y) — (&', X', Y)I™ (5.12)
and

E(@e, x, y, B)") < cu()| BI™, (5.13)
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for all B < A(1,1) = [0, ] x [4, 1]. This is much simpler than Section 3 since we do
not have to worry about isolated intervals.
A typical integral is of the form

J:[ ﬁ U,(x)e~ L5~ L% 4%p ds dt,
i=1

where {p;}, {p;} are linear combinations of the p;, and each generates {p;}. We first
apply the Cauchy-Schwartz inequality in dp, then use

1

Ufx) < T

to bound the integral displayed above by

o 1 1 i
CJ~[ l_[ Tw__lﬁﬁdg df

0,11 i=1 Si

" 1 1 )
SCJ l_[ mﬁd'ﬁ, (smceﬂ>])
[0.T]" i=1 i i

m 1 3 1/3 m 1 \32 2/3
[ (0T T ()] <
o.7m\i=1 Si [0, T Ni=1 Si

since
10 6
32/p—1 II—=1]==-x<1
2/p—-1< (s )8
and
31 15
——<—<
28 16

With these ideas (5.12) and (5.13) are easily proven following the argument in Section
3. & is handled similarly.

We now use (5.11) to identify x(x, y, T) = lim,_,, 2(e, x, y, T) as the local time of
Y(r, s, t). Let f(x, y): R* - R be a continuous function with compact support away
from the hyperplanes x =0 and y = 0.

All terms in (5.11) except (e, x, y, T) are known to converge locally uniformly in
x, y away from x = 0 and y = 0—hence this must also be true for afe, x, y, T) (the
above fact for &, x, T) is proven in Rosen [1987]). Thus we can integrate f dx dy
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and interchange the & — 0 limit. Therefore

jf(x, y)ax, v, T)dx dy = lim .[f(x, Yale, x, y, T) dx dy

e—+0

= lim j (j Pe. (X (1, )P, ,(X(s, D) f(x, y) dx dy) dr ds dt
e~+0 J By

e—+0

= lim f pEf(X(r, s), X(s, t)) dr ds dt
Br

= J' f(X(r, s), X(s, 1)) dr ds dt (5.14)
By

where
p¥ fla, b) = Jpa(x —a)p(y — b)f(x, y) dx dy — f(a, b) uniformly.

Comparing with (1.2) we see that a(x, y, T) = lim,_ «(¢, x, y, T) is a version of the
local time for x, y — 0. However, it is clear from (5.11) that a(x, y, T) has an integrable
singularity along the hyperplanes—hence «(x, y, T) is a version of the local time for
all x, y, T.

¢ PROPERTIES OF THE LOCAL TIME a(x, y, )

In this section we will prove the following theorem.

THEOREM 6 Let 8 > £, then we can choose a version of the local time x(x, y, B) with
the following properties holding simultaneously with probability 1.

1) alx, v, *) is a measure for each x, y # 0

ii) a(x, v, -) is weakly continuous in x, y # 0
i) a(x, y, -) is supported on {(r, s, )| X, — X, =x, X, — X, =y} for x, y #0
Proof As before we take a(x, y, B) = lim, ., (¢, x, y, B) for B a rectangle. We will

show that this can be extended to a measure with all the properties of Theorem 6.
We identify a rectangle

B=1[a a]x[bb] x[c ]

with its end points—so we often write B for (a, a', b, b', ¢, ¢). Using Theorem 1 and
Proposition 2 we verify that for all rectangles B, B' < B,

”](8* X, Jr', B) =" 1(5’7 x” }", B’)Hm S cm(’}’)“(ga X, ,V1 B) =i (8'3 x's y’a B’)“?s (61)
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for some y > 0, and all m. Following the steps in Section 5, and using the results of
Rosen [1988] on &(x, -) we find that for x, y away from zero (e, x, y, B) satisfies an
inequality similar to (6.1), hence via Kolmogorov’s lemma, Meyer [1980], p. 116 we
have locally

|a(e, x, y, B) — ale’, x', ¥, B')| < cl(e, x, y, B)— (¢, X', y', B)|" (6.2)

with probability one for all rational ¢, & > 0, B, B’ and x, X', y, y away from zero.
Using the continuity of (e, x, y, B) for ¢ # 0 we see that in fact (6.2) is true for all B,
B, & ¢ > 0and x, X, y, y away from zero. Hence defining « as above, we have locally.

le(x, y, B) — alx', ¥, B)| < cll(x, y, B) — (', ¥, B)I” (6.3)

for all x, y, X, y’ away from 0.

For such x, y this shows that x(x, y, -) can be extended to a measure, also denoted
#(x, y,*) and by the argument in Section 5 that this is a local time, i.e. will satisfy
(1.2). This proves (i). (ii) is easy using (6.3). Finally to prove (iii) we use an argument
of Shieh [1986]. See also LeGall, Rosen and Shieh [1989]. Let Dy = {(r, 5, 1)| X4 —
X,, —x|>dand|X,. — X, — y| > J simultaneously for all possible choices of the
+’s}. Of course, D, is open, and the definition of «(e, x, y, D;) shows that for any n > 0,

ale, x, y, Dg) < for & small.
By property (ii), weak continuity, this will also hold for «(x, y, D,;}-hence
a(x, y, Dy) = 0.

Thus ofx, y, -) is supported on (| J; Ds), hence on the set (r,s t) such that
X.. —X,. =x, X,, — X,, =y for at least one choice of +’s. However, it is clear
from (6.3) that a(x, v, -) has no hyperplane mass-—and since x has only a countable
number of discontinuities, x(x, v, -) is in fact supported by

{(rs S! t)IXS_X,,=I, XI_XS':.V}‘ D

7 LOCAL TIME AWAY FROM THE DIAGONAL

In the introduction we mentioned various properties of the local time which hold
for § > %. These are much easier to verify than the properties we have been dealing
with until now, but since they do not appear explicitly in the literature we will indicate
the proofs.

THEOREM 7 If > %, the Y(r, s, t) has a local time over any bounded Borel set B = R%.

Proof The proof is similar to Rosen [1983], and goes back to Berman [1973].
We use Fourier analysis to show that the measure ug(-) defined by wug(A) =

STOCH.—C






