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1 Introduction

Let L? denote the local time of the symmetric stable process of order 8 > 1in R, L?
is known to be jointly continuous (Boylan [1964]). We will study the p-variation of
L7 in z, and generalize results concerning Brownian local time of Bouleau and Yor

[1981] and Perkins [1982].
Fix a,b < 0o and let Q(a,b) denote the set of partitions = {zg=a < 2,--- <
z,, = b} of [a,b}. We use
m(r) = sup(z; — £i-1)

to denote the mesh size of =.

Theorem 1.1 Let =1+, k=1,2,... then

(L - LFY) ——»c/ L5y (1.1)

T€ET
in L%, uniformly both in t € [0,T] and = € Q(a,bd) as m{x) — 0.
Here
g = (2K)(4c)k, ¢ -—/ pe(0) — pe(1)dt (1.2)

and pi(z) is the transition density for our stable process.
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For k =1, i.e., Brownian motion, we recover the result of Bouleau and Yor [1981]

and Perkins [1982]:
b
X (15 - L7 — 4 [ Lide,

TiEX

This quadratic variation allows one to develop stochastic integrals with respect to

the space parameter of Brownian local time, see also Walsh [1983].

We note that the right-hand side of (1.1) is a k-fold intersection local time for

the self-intersections of our stable process in [a, b].

The methods of this paper only allow us to compute p-variations when p is of
the form p = 2k, which limits results of the form (1.1) to § =1+ % In Marcus and
Rosen [1990], we obtain analogues of (1.1) for arbitrary 8 > 1, in the sense of a.s.
convergence. The convergence, however, is not uniform in Q(a,b). If we want to
obtain results for arbitrary 8 > 1 by the methods of this paper, we will have to be
satisfied with the following:

Theorem 1.2 Let 8 > 1, then
ek
I'ZG:, ((z, — I.‘-l)") — c/‘; (L7)" dx (1.3)
in L?, uniformly in both t € [0,T] and 7 € Q(a,b) as m(x) — 0, where
B-1 1

2 2k
and € is given by (1.2).

The methods of this paper were a natural outgrowth of our second order limit

laws for the local times of stable processes, Rosen [1990].

It is a pleasure to thank M. Yor for drawing my attention to the problem of

p-variation of stable local times.

2 Proofs

Proof of Theorem 1: We write, for 7 € Q(a,b)

5 ({ [t - ¥ - L)})

€T
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= & /ab [E{(L:)" (LY)*} dzdy

-z ’ SE{(s - LY (1) dy

+ TE {(L," e 7 L,’"‘)Zk}

= X— 2B, + C,, where € =m(r) (2.1)

We will show that as € — 0, each of A, B, C, converges to

[(2k)!(2c)"]2; /  dz / ' dy / / ﬁ s, (Fiy i1 )dts (2.2)

0t <SSt 1
where the sum runs over all paths % : {1,...,2k} — {z,y} which visit z,y an equal

number of times (i.e. k times each).

The fact that A equals (2.2) is straightforward, so we turn to B,. We have

B{(Lz - i)™ (19"}
2% Ly k
Ti _ i v
E{llz—ll |z - arz gl / dL,j}

(2k)!k!EE( / / ﬁdl:}") (2.3)

0<t <o Stge<t 171
where the sum runs over all paths » : {1,...,3k} — {z;,y} which visit y exactly
k times, and
£y = [F L7
Ly = L (2.4)

We will say that a path = is even if its visits to z; occur in even runs. A path

will be called odd if it is not even.

Assume that 7 is even. Then we can evaluate its contribution to (2.3) by succes-
sive application of the Markov property. We use the following observations, where
[ ] will be used generically to denote an expression depending only on the path up

to the earliest times which are exhibited.

E([ ] /t 2 (dLz_, —dL7) /’ 1dL:;_de;-,)
3~ 85—
= B(1 1 () [ s - panaeids)  @9)
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E ([ ] /t_ (azz:_, —drzi=1) /’_ dLE +dL:;:—1)

t t
= E([ ] / (g, -z -/’jlpA,j(0)+pA,’(Ax;)dsJ~) (2.6)

t i Ti—y
E([ 1/ " oany / | dL,;+dL,;—)

85—

= E( ]/ dL,, 1/} Pas; (¥ — %) + pas;(y — x-‘-l)‘“i) (2.1

( / dL,,I/: dLZJ_)
( / dLy, /:_lpA,j(n)dsj) (2.8)

85

E([ ] /' (azz:_, - drz=1) / dL”)
8j-2 35—
= B(1 1 (s, - a) /J_ pA,,.(z;—y)dsj)

¢
+ E([ ]./s,-_ dLg /, Pas; (e — pasi(Tia —y)ds,) (2.9)

E( ]/ dL.,,lf_ de;—dL:;-1>

( / aLy | / L. Pas;(Zi — y) — Pas;(zia —y)de) (2.10)

85—

As we see, (2.5), (2.9) and (2.10) give rise to ‘difference factors’, i.e., factors of

the form
/ ps(y) — ps(y — Aai)ds (2.11)

We will see below in Lemma 1 that such factors give a contribution

- 1

O(Az)™! = O(Az)*,
hence whenever we have > k difference factors, the contribution to lim,_,q B, will be
zero. We can see by using the above formulae recursively that all terms arising from
the evaluation of the expectation associated to an even path = have > k difference
factors, except for a contribution which can be written as

2" / . / H PAs, (7]"'[, 77’[_1) I:IIPA'j (0) - PA:,-(AZ:') (212)

2k k =1
t=1 A’I+E,'=, At;<t
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where # induces the path # : {l,...,2k} — {=z:,y}, (visiting both z; and y &
times) as follows: since visits of = to z; occur in pairs, we simply suppress one visit

from each pair. Note that in getting (2.12), we e.g. rewrote the factor
_/ Pas(y — i) + pas(y — zim1)ds
of (2.7) as
2/pAa(y - z;)ds
+ a “difference factor’, and similarly for (2.6) and analogous factors.
z

We will show below, in Lemma 3, that as ¢ — 0, the integral in (2.10) summed

over i converges to ¢* times the integral in (2.2). Furthermore, any given # will be

induced from precisely one even 7 which will show that the contribution of even

paths to B, — (2.2).

To see that odd paths = give zero contribution in the limit, we use (2.5)-(2.10)
recursively to see that every term in the expansion of an odd path 7 has > k

‘difference factors’.

We now turn to Cg:

{ - =y (o0 - 1))

= (QH2YE ( [/ T dzire - de;t"‘) (2.13)

0<h <<t 51

where the sum runs over all paths 7 : {1,...,4k} — {3, 7} which visit 7, j an equal

number of times, i.e. 2k times each.

We will evaluate

4k
E ( [ [ Tazie- de,"‘-*) (2.14)

0<i <<ty st 1
by using (2.5)-(2.10) together with

p(1 1] (e, - anz) [ avz o)

{3 t
= E ([ ] /‘ - (aLz, —dLz) /‘ . Pas(mi = 23) + Pasdei - Ij—x)dst)

2

w B (11 [ aadei= 5) - pafeia = 22)
+ {Pan(®i = 2j-1) — Pas (i1 — Tj-1)}dse) (2.15)
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and
11 11
( 1 dL:; ) [ dL:;_de;—l)
t
B(1 1] (@1~ 1) [ pates =20~ atases - wiis)
821

([ ] / arg / :_1 {Pas (25 — i) — pas,(zj-1 — 2:)
= Pas(%j = Tic1) + Pas, (%1 — zio1) }dse) (2.16)

We now call a path = even if both its visits to ¢ and to j occur in even runs.
Such a path uniquely induces a path # : {1,...,2k} — {i,5} by
(€)= x(20 — 1) = n(2¢)

We refer to a ‘difference factor’ of the form (2.11) as an ‘z;- difference factor’, and
note that the terms generated by (2.14) will give zero contribution to (2.13), in the

limit, if such a term has k; ‘z;-difference factors’ and k; ‘z;-difference factors’—and
k<kiAky, kyVky>k.

We can see using the above formulae recursively that if = is even, the only term

giving a non-zero limit will be

9% (2412 // ﬁpm,(z;f.-, Tsi_,)

S AT amt T A
k k
I1 (Pasn(0) = Pasn (A2:)) T] Para (0) = Para(Az;) (2.17)
m=1 n=1

and we show below, in Lemma 3, that this summed over i, § converges to the integral

in (2.2).

Finally, we turn to odd paths 7 and show that they contribute 0 in the limit.
The only new wrinkle comes from the second term in (2.16), which a-priori generates

only one ‘difference factor’ for the two local time integrals. However, if we fix § > 0,
and if

6
fu| =2y — 24| 26, m(r)< T
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and
t t
( ] / de; | —dLE / Iz —dLj;—l)
t
B[ (@1, ~at) [ psules =20 = paulasos — i)
811

+ E ([ ]/ aLy /:_. {Pas(z; — 7i) — pas(Ti-1 — 2:)
- PAM("EJ - .’0,_1) + PA:[(zj—l - zi—l)}dsl) (216)

We now call a path = even if both its visits to ¢ and to j occur in even runs.
Such a path uniquely induces a path # : {1,...,2k} — {i,7} by
(€)= 7(20-1) = x(20)

We refer to a ‘difference factor’ of the form (2.11) as an ‘z;- difference factor’, and
note that the terms generated by (2.14) will give zero contribution to (2.13), in the

limit, if such a term has &, ‘z;-difference factors’ and k, ‘z;-difference factors’—and
kSkl/\kg, k1Vk2 >k.

We can see using the above formulae recursively that if = is even, the only term

giving a non-zero limit will be

2”‘(2/&:!)2 / / ﬁpm,(xi,-, z‘l-fi-l)

Sk ALY st Y Aract =1
k k
H (pA""'(O) - PA,,"(AZ;)) H pArn(O) - PAr,.(Azj) (217)
m=1 n=1

and we show below, in Lemma 3, that this summed over 1, j converges to the integral

n (2.2).

Finally, we turn to odd paths = and show that they contribute 0 in the limit.
The only new wrinkle comes from the second term in (2.16), which a-priori generates

only one ‘difference factor’ for the two local time integrals. However, if we fix § > 0,

and if

| o

lul = |zics — 20| 26, m(r) <
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then we will show below in Lemma 2 that

I/O' pa(u — Az; + Az;) — p,(u — Az;)
—Ps(u + Az;) + p,(u) ds|
s 5—62 Az; Az;, (2.18)
while if |u| < 8, we can bound (2.18) by breaking it up into pairs—either with Az;

or Az; as the difference, to get via Lemma 1 a bound

c(Az)PY A (Azj)PL. (2.19)

The contribution of (2.18) and (2.19) will then be bounded by
c o
c Z,: Az; Az + L
lu<s
for some a >0, €=m(r) < £, and we now take first ¢ — 0 then § — 0 to see that
such terms don’t contribute in the limit. This completes the proof of Theorem 1

bl

and that of Theorem 2 is basically the same.

3 Lemmas

Lemma 1
[ 1@ -p) | @t <e |l | <o -yl @)
and
[ 20 = niyt = o= 40 (72 62)
where
c= [ (pu(0) ~ p(1)dt < oo (3.3)

Proof:  py(x) is monotone in |z|, hence if |z| < |y|,

L 1p@ -pw) | dt= [ nie) - i)

L @0 = 50) = (00) ~ )

L 00 - pw) - 0100) - ula)) at

L @@ -p) dt= [7 (uf0) - mta)) a (34)

IA
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since p;(0) — pi(x) > 0 and we will now show it is integrable in .

For this we use the scaling:

#i) = 55 1 () (35)

so that
ORI O
k0 -n(55))
[ pon (a0

and the last integral is finite since, for ¢ small we have |pi(y)| < p1(0) and 8 > 1,

I

while for large ¢, we have from symmetry that

c

1
Pi(0) — (m)| < a7 (3.7
It is now easy to see that (3.3) is the integral on the r.h.s. of (3.6). This proves
(3.1).

For (3.2) we write
T
/0 pi(0) — pe(x) dt
00 00
= [T 0@ -p@at- [ 50) - mia)t (38)
and use (3.6), together with the bound from (3.5), (3.7)
/T p(0) — pi(z)dt
w1
o118 —-1 .
&lx| -/7'/::5 7 di

. . T 1-3/ﬂ
= ™ (25)

Nt
Eparpmt (3.9)

IA

Lemma 2

/OT | p(z+a+b) —pz+a)—p(z+b)+p(z) | dt

(3.10)
Jor |z| > 4(a V b).
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Proof: We integrate by parts:

& N T
) = g [ e
= _/eipz p2 e—tp‘dp

= 5) gl
= ;—21/ e'.”""':; (p2 e"”) dp (3.11)
so that
@
P (@)] = Izlz/ l P _M)i dp
< Sf e s () e
BNt

Now, the mean value theorem, our assumption that |z] > 4(e V b), and the

integrability of tTl,g on [0, T] finishes the proof of Lemma 2.

Lemma 3 Let f € LY([0,T}) and set

F(s) = /.---/f(t)dtl..‘dt

E::x ti<s
then

k
/"'/ f(rl"-"rj)n ps:(o)_pu(zl)drds
Ef.: "+Z::=1 ¢St =
< |z .o PTTR®) (3.12)

and for any § > 0, we have
k
// f(rla"wrj)H ps:(o)_pu(zl)drds
Tyt Doy nest “
&+ -1 |zel>~#
= |z1...2x | (F(t) +0(15)+ O (sup S3/AT )) (3.13)

where o(15) means a term which goes to zero when & — 0.
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Proof:  (3.12) is immediate from Lemma 1. To see (3.13), fix § > 0, and define

¢ = {(n9| ZT1+ZSz<t}
i=1
Dy = ((ne) a6 foralld)
Note that
N (Dg) € { Zr.St and s; > 6 for- somel}
i=1
so that
H 0s,(0) — ps,(2¢) drds
on(Dé ) =1
- z, 3P
< EF(H) |y ...zl ! sup [S;L_ (3.14)
from Lemma 1, and (3.9).
Now set ]
i
={(rys) | Xor < t—ké)
i=1
and note that, by Lemma 1,
H P5,(0) — ps,(z¢) drds
CnD,n(H‘)
< & loy...a® N (F(t) - F(t — k6)) (3.15)

Finally, note that

CﬂDsﬂH;y = {(7‘,3)

J
Er; <t—kéb, and s, <§, forall Z}

i=1

so that, from Lemma 1,

H Ps,(0) — ps,(27) drds
CnD;nH, =1

&
F(t — k6) H /0 25(0) — py(ze) ds
£=1

1 . z
F(t - k6) (c" N Lt A T PO sup ‘53l/|ﬁ : ) (3.16)

(3.14), (3.15) and (3.16) now complete the proof of (3.13).
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