Self-Intersections of Stable Processes in the Plane:
Local Times and Limit Theorems f:

JAY S. ROSEN

1. Introduction
Xt will denote the symmetric stable process of index

B>1 in R2, with transition density pt(x) and A—potential

¢,(x) = j(‘) me_'\tpt(x) dt.

Ve recall that

R R T

(1.1) G, (x) : -
° rg2)  2Pr X%
To study the k—fold self-intersections of X we will

attempt to give meaning to the formal expression

(1.2) S f ¢5(xt2 - xtl)---é(xtk - xtk .
0<t, L. . .Sty <t ]

Let f20 be a continuous function supported in the unit
disc, and set
1
fe(x) = —27 f(x/€)
If we think of fe as an approximate 6 function, we are led

to consider

*This research supported in part by NSF DMS- 8802288 1§ 
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_ k
(1.3) w () = S fat g £ (x - xt__l)dti
0<t <. Lty St Q=2 1

as an approximation to (1.2).

As € » 0, o« (t) will diverge (due to the
?

contributions near the ¢diagonals’ {ti=tj}). To get a
non-trivial limit we must ‘renormalize’, which in our case
means subtracting from ak’e(t) terms involving lower order
intersections. Thus, we define the approximate

renormalized self—intersection local time,

(1.4) T, e(t) = Z(—h R P G
k
R T
OStl <tkt i=2 1 i-1 i-1
wvhere
(1.5) h, = [£_(x)6,(x)d%x

- ?17_ J6,(x) £(x) ax.
Note that 71,e(t) = t.

Following Dynkin [1988B], to reduce our anlaysis to
managable proportions, rather than study 7k,€(t) for fixed
t, we study 7k’€(() vhere ( is an independent exponential
random variable
(1.6) P(>t) =

We will find that 7k,e(<) converges, as € - 0, if and

et

only if B is sufficiently large. Ve recall that X has

k—fold self—intersections if and only if k(2-8)<2.
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Theorem 1: If (2k-1)(2-8)<2, then Tk E(() converges in 12 “{
to a non-—trivial random variable denoted by 7 (€) - |
Moreover, we have
x/2
) ”7k,e(4) - 7k(<)”2 Sce
where x = 2—(2k-1) (2-8)>0

Aside from the intrinsic interest of 7%(¢) as a

measure of k—fold intersections, we hope to show in future

work that 7k(() arises naturally in the asymptotic

expansion for the area of the ’stable sausage’
I

2 .
Se = {x e R ! 0225( ”Xs - x” < e}

generalizing the work of LeGall [1988] for Brownian motion.
Ve also note our previous work involving a different form
of renormalization, Rosen [1986]. The simplifications
arising from the present form of renormalization will be
most helpful in what follows.

Vhen the condition of Theorm 1 is not satisfied,
7k’€(() will not converge in 2. Instead, appropriately
normalized, we get a central limit type theorem involving
L, a random variable with density —%—e—lxl, [known as

Laplace’s first law].

Theorem 2: If (2k-1)(2-8) = 2 then
T, () (dist.) geoal
v 1g(1/¢) [ ]
r 2-8 2k—1
c(B,k) = 2 [ R ] )

where
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Remark: (i) compare (1.1).

(ii). If B, denotes a real Brownian motion then BC and
1

L have the same law. This provides a conceptual

link between Theorem 2 and Rosen [1988], Yor [1985].

Theorem 3: If (2k-1)(2-8)>2 but (2(k-1)-1)(2-6)<2 then

6“/271(,6(() (dist.) S [ C A, ]L
where « = (2k-1)(2-8)-2>0 and c(B,k) is an explicit

constant.

Bemark: In the proof of Theorem 3, we will find that

¢(8,%) = Lin A B2 (),

and we will give an exp11c1t formula for c(8,k).

For more information on self—intersection local times
see the survey of Dynkin [1988A] and the references

therein.

2. Preliminaries

We have formulated our theorems in terms of 7k,€(t),
an expression which does not involve ), the parameter of
the exponential time (. In our proofs, it will be more

convenient to work with

k—
(2.1) T, (8) = Z(—H YA o, (0
- k -
- J‘ j‘ dty 1 [fe(xt._ t. 1) de; Heati_l(dti)]
0<t, <. .St &t =1 o=
which differs from 7, _(t), (1.4) in that h =ff _(x)G (x)dx

is replaced by
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(2.2) H=[f_(x)6,(x) dx
It is easily checked that
k s
2:3) 0= Yo 1) B .
p j=1

This expression will allow us to derive results about the
7’s from results on the I'’s
The main point of this section is to derive a useful

expression for

(2.4) E[ij e, (0]
o Soof el e [xy -ng Jod on s o)
=ZI(D)
D
where
(2.5) I(D)

[ f Mad 1 j (dtd)
=E[f - f Wat] T [f (X Jatd-ns o (atd “
. 1.7 €. ] ] 1 7€ ] 1
DY j=1 i=2L %j tyotig ti 1
and D runs over the set of orderings of the nk+1 points
0,t3; 1<i<k; 1<j<n; such that o<td<td< - <td for a11 3.
Fix D. Ve call a set S of t’s elementary, relative to

D, if

I, I b
(2.6) S= {tl, ti,10 sty t_i}
and S satisfies

a) td

i+ $t

s ad

b)  no other t’s come between ti and tf in D, (except
1

J
t1+m’

2<m< £)
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c¢) S is maximal in the sense that the t preceeding tg in
; J
D is not t3_4.
With such an elementary sequence S, (2.6), we
associate a function H_(Y) of nk variables
Y = {Y-}; 1<i<k; 1gjgn}

by the formula

0 - l - -
(2.7) H,(Y) = 6,(v], ) -6, (31, 0)07; .6, (YY)
yd vd i i
. . i+1? 20 i+ 4
j =yl i
Here Yiet = Yi+1 - Yi’ etc.
F = ca
Aal,...,al Aa1 Aa2 Aal F

and

s, F(x) = F(x+a) — F(x)

In particular, if S = {tg, tg} has only two elements,
1
then the above reduces to
- 3 _ vyl
(2.8) HS(Y) = GA(Yi Yi)

Let €(D) denote the elementary sequences in D. Our

formula for I(D) is
k .

(2.9) I(D) = f---f[n_2 fe.(y-})] !1 Hg(Y) dY
é} J e€(D)

as is easily checked, using (2.2).

The following lemma, proven in Section 7 is basic.

Lemma 1: Let § > 1, then
1
(2.10) 0 S G/\(Z) S C[GO(Z) A '—;-3].
| |
If |z| 2 2fe, then
V4 € ‘
(2.11)  swp Aal,.__,ach(z)\ < c[j—z—]-] G, (2) R(z)

la;| <
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. [ f Gy (ay )]I ags--.a,02(2)

et 4ip] "

where R(z) is a bounded monotone decreasing integrable

(2.12) Tu

|ai

IAT

I

R(z)

function. (In fact we can take R(z) = ——lTIﬁ).
1+z

If S € €(D) has the form (2.6), we say that S has
length ¢, and write £¢(S) = ¢. For this §, (2.7) and lemma

1 mean that
£(S)+1 ](& 1)Z(S)R N

| | €.
(2.13) [Hg(D) < < 6, (Z) [—I"%T
vhenever Z = YJ _ ¥i satisfies |Z| > 2L¢;.
1

3. Proof of Theorem 1

From now on, X is fixed and G(x) without a subscript will
refer to GA(x). Similarly, we write T, e for 7k,e(C)’ etc.
Ve first show that to prove theorem 1, it suffices to

prove the following analogue for T.

Proposition 1: If (2-8)(2k-1)<2, then [y ¢ converges in L2
’
to a non—trivial random variable denoted by Fk' Moreover,
we have
/2
(3.1) ”Fk,e - Tilly € c e
vhere « = 2-(2k-1)(2-8) > 0.

To see that proposition 1 implies theorem 1, define
o
(3.2)  H(x) = 6 (x) - GA(x) - f (1-e**)p, (x)dt

a?p.
<2vr> ez S pB<A+pZ’5 P
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Since 8 > 1, H(x) is continuous, bounded and

(3.3) |h - H_=-H(o)| = | ff (x) [H(x) - H(o0))dx

% ipx 2
S G 1O g e

¢l it [ty

A+p”™)
<c e6f—ﬂ—riﬂ)- d2p
p"(A+p
for any 0 £ § < 1.
Thus,
(3.4)  |b, - H,_ - H(o)| ¢ [222&2_3’ : § ; gg
for any 6 > O.
Ve write
26 —2 -3
= 2-2(2-8) - &

= 5-(2-(2k-1)(2-0)) + 1 - & + (k — =) (2-H)
> 5 (2-(2k-1) (2-5))
since k 2 2, and 6§ > O can be chosen small.

Since, obviously

1> ——(2-(2k-1) (2-6)), (3.4) gives
(3.5) |h, - H_—~H(o)| < c (2-(2k-1) (2-8)) /2

so that (2.3) and proposition 1 now imply Theorem 1, with

(3.6) Z( - 1)) A

Proposition 1 w111 follow from

Proposition 2: If (2-8)(2k-1) < 2, then for
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0<efes2e<1
we have
‘ _x/2
(3.7) ”Fk,e - Fk,gng $c f“/
vhere « = 2 — (2k-1)(2-0)
For, assume proposition 2.

choose n 2 0 such that

EHET— < € X —gﬁ. Then by (3.7),
n-1
(3-8) Iy -1y lly € Yoy J€/gi Fk,2/2i+1”2
i=0
+“Fk,“/2n - Pk,e”?
n
_x/2 1
Ce Y v
i=0
< c /2

This shows the L2 convergence of Fk ¢» and also
?

establishes (3.1)

Proof of Proposition 2:

(3.9) I

According to section 2

2
ke = Tk, ell2

e, = Y 1m)
D

= E((Fk,e -

= Zf---fFe’E(yl.)Fe’E(y?) Hg (Y)dY
D Se€(D)
where
k k
(3.10) = H f (vy) - H f2(v;)
1=2 i=2

Fix D.

293

Given any 0 < ¢ < € < 1.
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The ordering D, in a natural way, induces an ordering

on Y?, Y2, Thus, if t? < t?, we will say that Y? comes
i

before Y?. This induces an order on €(D). We may assume
i

that the first element in D is ti, hence our first element

of €(D) is {o, ti} giving rise to the factor G(Y}). Let

S = {t},...,t%,tf} be the next element in €(D). Let

2 1
Z Y1 - Y1.

Ve first show that the contribution to I(D) from the
region {|Z| < 4k3} is 0(€%).

To see this, we first integrate the Y’s in reverse
order; we start with the last Y and integrate successively

until we reach Yf using the bound

(3.11) S (x-a)6(x) dx
= cj'eipa %(e P) _;%;3_ d2p

<cf [£(e p)| —p},—d%

e a—
S B
For the Yf integral we use
(3.12) [ ey -yl av?
|Z | £4ke

< J ew a%
1Z1<6kE

< J ¢, (z) d’z
12| <6ke
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-2
=)
€

The remaining Y;,Yt_l,...,Yé integrals are handled
using (3.11), and finally JnG(Y})in = —%—.
Since there were <2k G factors in (3.9), we find that

the contribution from the region {|Z|S4k?} is

2
o[~z pmeTy) =
Thus, for the remainder of our proof we can assume
that |Z]|24Ké. 1In view of (2.13), we can bound the integral
I(D) over |Z|24ke by

I GEK_I(Z)fjéh—](ﬂ_l)z(D)R(Z)dz
|Z|>4ke

where £(D) = Z £(S).
See(D)
If £(D) 2 2, we can bound (3.13) by replacing (/-1)¢(D)

with

(3.13)

2(8-1) = 2 - 2(2-8),

giving

_2-2(2-4) 1
(3.14) |Z|g;kz € 12 2+ (&3] (2F)

since k 2 2.

dZ = 0(%)

We can thus assume that £(D) < 1. If £(D) = o, D must
be the ordering
1 2 1 2 1 2
(3.15) Dy =t < t] < t5 < t5 < t3 5...5tk

and then

k
(3.16) I(D*)=J~F6’E(yl)Fe’E(y?)](IG(Yi - Y2 )6(¥? - vdy
1=1
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Ve note that
G(Z+a+b) = G(Z)+AaG(Z) + 8,G(Z) + Ai p6(2)
’

and we use this to expand G(Y? — Y%), with Z = Y? — Y} as
before
l
R T R N |
and a_Yl—Yl_ Zyj
j=2

b

i
2 2 _ 2
- v= 3
j=2

Ve can thus write the product in I(D) as a sum of
monomials in G(Z), 4,G(Z) and Ai,bG(Z)' If any monomial
contains either a a2¢ factor, or 2 AG factors then we can
use (2.11), in a manner similar to (3.13), (3.14) to show
that the integral over |Z|24ke is 0(&%).

But, because of the factor Fe’g(y%) Fe,z(y?) in
(3.16), it is clear that the integral will vanish if our
monomial is of the form G2k_1(Z) or sz_l(Z)AaG(Z).

A similar analysis applies to the case of £(D) =1,

completing the proof of proposition 2, hence of Theorem 1.
4. The second moment

In this section we calculate the asymptotics of
E(I‘ﬁ’e) as € » 0. If (2k-1)(2-8) < 2, then the last
section shows that
(4.1) E(I‘]2(,6) — 2 [P l(z) d%.

Consider now the case (2k-1)(2-8) = 2, so that «x = 0.
It is easily checked that all estimates of the previous

section which were 0(e*), also hold in this case, i.e. are
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0(1), leading to

(4.2) E(Fﬁ,e) -3 ¢Z1(5)a2% + o(1)
|Z|>4ke

2
= S (a2 0(1)
4kel|z|<1
since G(z) is bounded and integrable for |z|21.

As in (3.2), we write

(4.3) 6(z) = G (z) - H(z)
with H bounded, and we find immediately that (using (1.1))
2 2 2k-1 2
(4.4) BTy ) = S G- (z)d%z + 0(1)
ke | 2| <1

=2 <85 1501/6) + 0(1)

o

where c(8,k) = 2«

1 2k—1
] as in Theorem 2.

2zr
We next consider the case where (2k-1)(2-8) > 2. Here

we will see that all orderings D will contribute a term of

order (where now «x = (2k-1)(2-5)-2>0), plus terms of

€

lower order.

Consider a fixed ordering D as before, and

(4.5)  I(M) = f--fF HF.G) Hg(Y) dY
Se€(D)
with

k
(4.6) Fv) = [ £0p)-
i=2

Assume for definiteness, as in section 3, that the
first element in €(D) is {o,ti}, so that we have a factor
G(Yi) in (4.5). Ve change variables
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Y%,Y? — Xi’ i =1,...,2r where Xi is the argument of the

i’th G factor in I(D). More precisely, if the i’th

interval in D = {0<ti<...} is t? < t?, then Xi = Y? - Y?.
J J

We integrate out Xm = in and write
=1 r... 1 2
(4.7) I®) = 5[ f Fe(y,)Fe(y,)_]:I: Hg(Y) dX,...dX,_
Se€(D)

where €(D) is obtained from €(D) by removing the first
sequence, {o,ti}.

We vrite G(z) = G (z) — H(z) as in (4.3), and use this
to rewrite (4.7) as the sum of many terms. One term is

1 1 2

(4.8) I SEGORGD J] M axy---dxy

Se€(D)
where Hg is defined by replacing each G in HS with Go' The

other terms arising from (4.7) differ from (4.8) in that at
least one G has been replaced by H. We first deal with
(4.8), which will turn out to be the dominant term.
We scale in (4.8), and obtain
(4.9) T = [ROOFCD T o, axy,
Se€(D)

k
Fv) = [] £00)-
i=2

Let us show that the integral in (4.9) converges. If

the first sequence in €(D) is {t},té,...t%,t%}, set

where now

Z=X,,=Ys —Y; If |Z| > 4k, then by the HJ analogue

£+1 £
of (2.13) we can bound our integral by
2k—-1
c J' G, (z) dz < o.
|Z| >4k
If, on the other hand, |Z| < 4k. then all |X,| < 8k, and
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using J' G,(x) dx < @ we can bound our integral by
|X|<c
integrating in reverse order dx2k,...,d£'

Next, consider a term arising from the expansion of
(4.7), in which at least one of the G, factors of (4.8) has
been replaced by H(:).

If |Z| < 4ke, we first bound any H(-) factor by a
constant, and then scale. We obtain an integral, which can

be bounded as above (since now |Z| £ 4k) multiplied by —%—

x
€

with « < «.

If |Z| 2 4ke, then by (7.10) and (7.12) we find that

for any ¢, including ¢ = 0, and ]ai| < e,

) |a1|-...|a£| 1
(4:20) Jaf |, K| < c[ . x2_¢J A1
)
|a1]-...|a£| 28
< el B ] X1 2 2L

for any 0 £ § < 1. Scaling with these bounds, gives a

factor with & < « if 6§ < 1, and an integral which can

x
€

be bounded as long as § is chosen close enough to 1 so that
(2k-1)(2-8) 6 > 2.
Thus we finally have

(4.11) E[Ff(,e] -1

T2 SFOHRGD) [ mdx,- - axy,
? Se€(D)

ey
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5. Proof of Theorem 2

Ve proceed by the method of moments. Since
2n

E(L°) = (2n)!
(5.1)

E(L2n+1) - 0
it suffices to show that

r 2n n
E[ ke ] — (20)! [_siglk)]

(5.2) r 2n+1
in order to get

v 1g(1/¢€)
e _(dist)  [[EEE;
A ]
v 1g(1/€)

which then implies Theorem 2, by (2.3) and Theorem 1.

Ve recall from section 2 that

(5.3) B(T} ) = fo[liil Fe(y-]:)] 11 Hg(Y) dY
D 3= Se€(D)

where D runs over all orderings of
{o,tg, j=1,...,m;i=1...,k}
Let

U [¢d, 4
(5.4) U(D) =_9 [tl, tk]

j=1
U(D) naturally decomposes into the union of its components;
vl, v2...,03. 1f, say,

; b 3
Ut =U [tll, tkl]
- £=1 -

then we say that U' has height p, and denote by D' the

ordering induced on

J
{0, tnl, £=1,...,p; n = 1,...,k}

by D. By translation invariance we find that
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J
(5.5) I(D) = H 1(p1)
i=1
It is clear from this that if any component of U(D)

has height 1, then I(D) = 0. Furthermore, from section 4

we know that if DI has height 2, then

<83 1g(1/€) + 0(1), if D = Dy,Dyn

I(0?) =
0(1) otherwise

vhere Dy is given by (3.15), and Dy4 is obtained from D, by

permuting t%

with t?.

If m = 2n, and U(D) has n components of height 2, then
the above allows us to compute I(D), and since there are
(2n)! ways to permute the tj’s, we see that the
contribution to (5.2) from orderings D with n components of

height 2 is

(20! [ (1 1/6)™ + 0(18(1/e))™

To complete the proof of (5.2) it suffices to show
that if U(D) is connected and of height n > 2, then
(5.6) I(D) = o(lg(1/e))™/?

Ve will develop a three step procedure to prove (5.6).

We will refer to Y%,Y?,...,Y? as n letters, and to Y;
as the j’th component of the letter Y?. If Se€(D) is of
the form (2.6), i.e.,

R J j
(5.7) S = {ti,...,t£+i,ti}
and if ¢ > o, then Hg(Y), see (2.7), contains factors
G(y%+1)...G(y%+£), and we say that the letter YJ has ¢
isolated G factors. This terminology refers to the fact

that in these factors Y% appears alone, without any other
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letter. Let
I = {i[Y% has isolated G factors}.

It is the presence of isolated G factors which
complicates the proof of (5.6), and necessitates the three
step procedure which we soon describe.

For each Se€(D) of the form (5.7), (even if £ = o) we

write

5.8) Hg(Y) = Hg(¥) [t 5 _ 3 NS N ]
(5.8) Hg(Y) s(M {|yi - yi|54ne} {|Yi - Yi|>4ne}
and expand the product in (5.3) into a sum of many terms.

We work with one fixed term. We then say that Yé and Yé
are G—close or G-separated depending on whether the first

or second characteristic function in (5.8) appears in our

integral. If Yj,Yj never appear together in any HS(Y),
then they are neither G—close nor G-separated. (This
determination of G—close, etc. is fixed at the omset, and
is not amended during the proof.)

For ease of reference we spell out two simple lemmas.)

Lemma 2: Let g;(Z) 2 O be monotone decreasing in 1z, If

(5.9) S

12 2¢
then for any ay,.-.,a

g;(2)d"Z < M(e).

::jv

i=1

p

::jv

(5.10) g;(Z-a;)d"Z < pM(e).

{17-2|2¢,Y;}

i=1

Proof: The integral in (5.10) is bounded by
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>
j=1 |Z-a;|2€,V; ]
{[Z-ai|2|Z—aj|,Vi

n
g;(Z—a;)d"Z

[
I I'U
[y

P P
<Y J ]1 g;(2-2;)d"Z < p H(e)

¢
(5.11)  f F ) [ 6o (¥ —apavs...ay < e 43D
|Y1|Se i=1 1

Proof: See the discussion about (3.11), (3.12). []

If S is of the form (5.7), and if Yq,Yé are
G-separated we recall the bound of (2.13):

(5.12) (V)| < e 6 t(8)+1(z) [751_] 6R(Z)

where 7 = Y{ - Yi, and 0 £ § £ (B-1)£(s) is at our
disposal.

Let

(5.13) I, = {ieIlYi is not G—close to any Yj, jeI}

(5.14) I, = I-I,

Ve briefly outline our three steps, and then return to

spell out the details. We integrate out one letter at a
time, in a manner which allows us to keep track of

potential problems.

303
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Step 1: Ve integrate out Yi, iel  using (5.12) when
applicable.

Step 2: We integrate out the letters from Il’ using (5.11)
whenever possible.

Step 3: Ve integrate the letters from Ic, i.e. letters
without isolated G—factors. This is the most
straightforward case.

Before spelling out the details, we can immediately
recognize a potential problem. After integrating several
letters, we may, inadevertently, have integrated out all
G—factors containing some other letter, not yet integrated.
Its integral might then diverge. To remedy this, before
integrating each letter we carry out the following.

Preservation Step: Before integrating Y., we search for

any two letters, say X.,Z. with components which are
separated only by components of Y. Thus we may have
factors of the form

(5.15)

L
G[X—Y.]G[Y. —Y.]---G[Y. -y, ]A G(Y-2)
i i+1 i i+d "i+d-1 Yisqr - oYiay (
(if (5.12) is not applied) or (if (5.12) is applied) of the

form

(5.16) G[x - Yi] Gﬁ(s)+1[Y1 - 21][—TYETZ—T]6“[Y1 - zi]
(Ve include the case X. = 0, i = 1).

In the case of (5.15), we write out 2% as a sum of

_z]

many terms, focus on one of them, say

G[Y. . .

From (5.15) we select the factors

+ ... + ¥

Ip
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1 v, lafy. |...efy. Jefv, +y. + ... +y. —z]
(6.17) G[x 1]G[y31] G[pr] [ S PR
Now

18) [X-Z| ¢ [X—Y.]— Ly oy [ Y .ty _z]|
(5.18) |X-Z] £ l 5 le yJ2 pr+ Y1+yJ1+ +pr

< ]X—Yi|+|yj1|+...+|yjp|+|Yi+yj1+...+yp—Z|

Hence |X-Z| is less than (p+2) times the maximum of the
terms on the right hand side of (5.18). Hence one of the
factors in (5.17) can be bounded by a constant times
G(X-Z).

If we have the form (5.16), then necessarily |Y,-Z,] 2
4ne. If |X—Z1| € 4ne, then we can bound

V(Y,Z,) & GO(Yl—zl)[TYf:ZIT]JR(Yl—zl) by V(X-Z,).

Note that W(:) is integrable. If |X — Z | 2 4ne, then
ve use
(5.19) |X — Z,| £ X =Y, | + |Y, - Y| + |¥; - L]

SIX =Y. + ke + |Yy — 7|

so that
(5.20) |X

] S 2(1X= Y5 + Yy = Z4])
so that as before we can replace either the first factor in
(5.16) by G(X — Z;), or a factor W(Y, — Z,;) by W(X - Z,).
Note that this step actually lowers the number of
G—factors involving Y. prior to integrating Y.. After
integrating Y., we find that we have not increased the
number of G—factors involved with X., (or Z).
One way to think of this preservation step, is to

suppress all Y.’s, and ¢link up’ with G or W the remaining
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letters which are now adjacent. (The case X. = 0 is
included). The upshot is that we never lose any letters
prior to their integration.

Ve finally remark that in (5.15), (5.16) we took our
first factor to be G(X. — Y;). If this factor is actually
V(X. - Yi) the same analysis pertains.

Ve now give the details of our three steps.

Step 1: Ve apply the bound (5.12) whenever S is of the

form (5.7), with j e I_ having isolated G—intervals (i.e.

£(S) ¥ 0) and |Y{ - Yi| > 4en. This is the only place we
will apply (5.12). Note that (5.12) does not increase the
total number of G—factors in our integral (we count both GA
and GO), but may increase the number of G factors
containing Y%. Let Ni denote this latter quantity. I

claim that

(5.12) >N < 2T
ieIO

To see this, let £(i) denote the number of isolated
G—factors containing Yi in the original integral, i.e.,
prior to applying the bound (5.12). At that stage Yl could
not have appeared in more than 2k—£4(i) G—factors. The
effect of (5.12) is to replace certain of the £(i) isolated
G—factors each of which had contributed 1 to N, and zero to
any Nj’ j # i, by G—factors which contribute 1 to Ni and,
at most, 1 to one other Nj' This proves (5.12)

If some N, < 2k—1 then as in section 4 the dy?
integral is bounded. For, since i € Io’ Yi has isolated

G—factors — hence, either it is close to some other letter,




Self-Intersections of Stable Processes 307

in which case lemma 3 shows the integral to be 0(1), or
else we will have applied (6.12), in which case lemma 2,
with 6 > o small, will show our integral to be 0(1) as seen
in section 4. (But remember, we always apply the
preservation step prior to integrating 1.

We proceed in this manner integrating all Yi with Ni <
2k-1, (after each integration we update the remaining
Nj’s).

If all remaining N, 2 2k, then since (5.21) still
holds, showing that now all Ni = 2k. The analysis of
(5.21), in fact, shows that in such a case isolated
G-factors containing such vl must be contained in factors
HS(Y) containing a remaining Yj, j e IO and to which (5.12)
has been applied; in particular, IY% - Y{l 2 4n. 1In such a
case we check that Yé,Yj cannot be contained together in

all 2k factors, hence Y' must be contained in at least one

factor with another letter, say Y. If the preservation
step does not directly reduce the number of G—factors

containing Y', then, since ]Y% - Yi] 2 4ne, we can still

bound one factor by W(Yj - Yj), by using the same approach

as in the preservation step, arguing separately for

IY% - Y{] < 4ne or > 4ne.
In this manner we integrate out all letters Y, i€

Io.
Step 2: I1 is naturally partitioned into equivalence

classes Ql,...,Qq, where i ~ j if we can find a sequence

is= i1’ i2, i3,~-': if =]
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i i +1
with Y P g—close to Y p+L
Consider Q. Choose a j € Qy such that £(3) € £(3i),

VieQ, - All Yi, i€ Q, are close to yJ in the sense that

|Yi - Yil < 4n2e. Ve then use lemma 3 to jntegrate, in any
order, all Y%,

ieQy, 1 # j. Since Q1 C I, we have £(i) 2 1 so that the
contribution from the dY} integral is at most

(5.22) 0[6 (2k‘£(1))(2_ﬂ)] = 0[6(5(1)—1)(2—ﬂ)]

The in integral, which is done last, is at most
(5.23) o[ eI,
from the £(3j) 2 1 isolated G—factors.

Combining (5.22) and (5.23) with £(3) 2 £(i) 2 1, we
see that the total contribution from Q; is 0(1) unless
either £(i) =1, Vi e @y or if some £(i)> 1, then
necessarily Q = {i,j} and £(i) = £(j)- In the former case
we can also integrate out all i # j except for one — so in
both cases we can reduce ourselves to Q4 = {i, J},

(i) = €(3) 2 1. Ve call such a pair a twin. v YJ are
close to each other, and we can assume they are close to no
remaining letter (otherwise (5.23) can be improved to
(5.22)). Ve leave such twins to step three.

Ve handle Qz,...,Q similarly.

Step 3: Ve begin with the remaining letter, say Yi, which
appears at the extreme right. Because of this, Y appears
in € 2k-1 G—factors. 1f vl vere part of a twin, then it
has at most 2k — £(i) — 1 G_factors, as opposed to the

2k — £(i) assumed for (5.22). This controls the twin.

If vl is not part of a twinm, then i € €. If y?!
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appears in 2k—-1 G-factors with Yj, then the analysis of
section 4, shows that the dY% de integral is at most
0(1g(1/e)).

It Yi appears with 2 letters, we already know how to
reduce the number of G-factors, so that the ayt integral is
bounded. We proceed in this manner until all letters are
integrated.

This analysis shows that (5.6) holds unless I = ¢, and
the rightmost letter has all G—factors in common with one
other letter — but then these two letters form a component ,
contradicting the assumption that U(D) is connected of

height > 2. This completes the proof of theorem 2.
6. Proof of Theorem 3

Taking over the notation of section 5, it suffices to
show that if U(D) is connected and of height n > 2, then
(6.1) I(D) = o(e)"/2
wvhere « = (2k-1)(2-8)-2.

The situation here is more complicated than that of
Theorem 2, since typically our integrals diverge and we
must control the divergence. Ve make two major
modifications. In (5.12) we now take § = 0, and in
applying the preservation step, or any other time we bound
a factor such as G or V with factors not involving X in
order to reduce the number of factors involving X to £
2k-2, we only bound G7, V7 where 7 is close to, but not

equal to, one. This will not significantly affect the
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order of our X. integral — but when we come to integrate
the other letters, a situation which would have led to
0(e™™) with 7 = 1 will now lead to o(e *). These
modifications will be taken for granted in what follows.

As in the last section, we will find that we can
associate a factor O(e_“/2) with each letter, while at
least one letter will be associated with 0(6—«/2). By the
remarks in the previous paragraph, and as detailed in the
sequel, this will occur if any factors associated with our
letter were obtained through a preservation like step.

Ve will assume that (2k—2)(2-8) > 2. The other cases

are similar, but simpler.

Step 1: As in (5.21), we have

(6.2) :E: N, <2k [T

ieIo
where Ni are the number of G-factors involving Y%, after
application of (5.12).

If Ni < 2k—-1 for any i, the in integral is

O[G_[(2k—2)(2_ﬂ)_2]] = o[e_“/2], since our assumption
(2k-3) (2-8) < 2 implies (2k-2)(2-8)-2 < (2-8).

Now assume N, = 2k-1. If vyl is linked to at least two
other letters, then as in section 5, we can reduce the
number of factors involving Yi, and now the in integral is
o(e_“/z). If Y! is linked to only one other letter, say
Yj, then Ni = 2k-1 is possible only if all Yi,Yj’s are
contiguous. (We note for later that YJ can be in I or I,
but not in I — I ). The ayt integral is O(e %), while the

dYJ integral will be bounded.
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Ve can assume that all remaining Ni 2 2k, so that by
(6.2), we actually have N; = 2k. Ve recall that this can
occur only if (5.12) is applied with pairs in Io. Ve leave
this for the next step.

Step 2: Ve begin integrating from the right. Let X denote
the rightmost remaining letter.

If X € Ic, it has no isolated factors, and being
rightmost can appear in at most 2k-1 G-factors (the extra
factors arising from (5.12) have either been integrated
away, or involve only letters from IO). If there were
actually < 2k—1 G—factors, then the dX integral would be
o(e_“/2). If X is linked to two distinct letters, we can
reduce the number of factors as before, while if all 2k-1
links are to the same letter, say Y, then Y is necessarily
in I®, and the dX integral is 0(e¢™™), with the dY integral
bounded.

If, as we integrate, we find the rightmost letter
X =Yl € Io’ we can check that Ni = 2k is no longer
possible, and we return to the analysis of step 1.

Let us now suppose that the remaining rightmost letter

Xel- Io'

Then X ¢ Qi for some i, say i = 1. Assume first that
X is within 4kZ¢ of some letter in Qf (ve include o), then
automatically an analogous statement holds for all letters
in Ql' Before applying this we consider all Q1 as one
letter and apply the preservation step to Q;_ This way, we
do not attempt to pPreserve letters of Ql itself. By the

definition of Ql, each letter has at least one isolated
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G—factor, hence £ 2k-1 G—factors, while X, being rightmost,
must have £ 2k—2. Ve begin by integrating dX, giving

o(e_“/2).

Again, by the definition of Ql’ X had a G—factor
in common with at least one other letter of Ql, hence that
letter now has < 2k—2 G—factors and we can integrate it,

'“/2). At any stage in our

again giving a contribution o(e
successive integration of the letters of Ql, it must be
that some remaining letter has had on G-factor removed —
since Ql was defined by an equivalence relation. This

gives a contribution o(e_“/2

) for each letter of Q.

Assume now that X ¢ Ql is not within 4k2e of any
letter in QC, so that in fact no letter of Ql is within 4ke
of any letters of Qi. If |Q1| 2 3, we integrate dX. Ve
can use lemma 3 since X is close to the remaining letters
of Ql. Being the rightmost letter, its contribution is

o(e_“/2).

Prior to the dX integration we preserve all
other letters, including Q1 — X. Because of this, it is
now possible that the remaining letters in Ql no longer
form an equivalence class, but it will always be true that
they are within 4ke of each other and of no letters in Qi.
We continue in this fashion and can assume that X is
in (an updated) Q,, with Q; = {X,Y¥}. If £(Y) < £(X), we do
the dX integral using lemma 3 for a contribution
0[62—(2k—£(X)—1)(2—ﬂ)]‘ When we reach Y, we have £(Y)
isolated G—factors contributing O[G'Z(Y)(2'ﬂ)], and
< 2k — 2£(Y) - 1 G—factors which give a convergent integral
by lemma 2. Thus, the total contribution is O0(e *) if
£(Y) = £(X), and o(e *) if in fact £(Y) < £(X).
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If, on the other hand £(X) < £(Y), we first do the dY
integral using lemma 3. Y has at most 2k—¢(Y) G—factors.
If in fact this is £ 2k—£(Y)-1 £ 2k—£(X)-2 then the dY
integral is

0[52—[21(—5()()—2] (2—5)] = o(e/2) o(f(®) (2-6)
and the dX integral is O[G_Z(X)(2_ﬂ)] as above.

Otherwise, we preserve Q;, then if Y still has 2k—£(Y)
G—factors, we first assume that at least one of these
G—factors links Y with some Z # X. Ve bound G(Y-Z) £ ¢
G(X-Z), and after the dY integral there remain £(X)
isolated G—factors for X and € 2k — 24(X) € 2k — 2
G-factors linking X with other letters. Thus the dX
integral is bounded by O[G_e(x)(z_ﬂ)]o(e_“/2) and
altogether the dX dY integral is o(e ¥).

If none of the 2k-£(Y) G-factors involving Y, involve
any letters Z # X, then all non—isolated G-factors must
link X and Y, in particular those factors to the immediate
right and left. Since X occurs on the immediate left of Y,
we needn’t bother preserving it from the Y integration;
which is

o (Aot (2)] _ o[ 2-(B1) (2-9)] o[ (e (2-9))
= 0(e %) O[GZ(X) (2“,5)]
and the contribution from dXdY is 0(e ).
In this manner we see that I(D) = 0(6_“/2)n.
Step 3: we must now show that in fact
(6.3) I(D) = o(e™/2)n
Let us agree to call two letters X,Y totally paired if

there are no other letters between them. From the above
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analysis, we know that (6.3) holds unless D is such that

all letters X fall into one of the following three types.

1) X e 1, and X is totally paired.

2) Xel, and X totally paired. We recall that it
cannot be paired with a letter from I - IO.

33) X eI~ I, and X € Q;, |Qi| =2. If, say Q4 = {X,Y},

then necessarily X,Y are G-close, hence have at least

one common G—factor, and by the above we know that

£(X) = £(Y) and X,Y are far (i.e. not within 4ke) from

Qi
3b) = {X,Y} with X,Y totally paired.

Cons1der now Xhe very first letter on the right, X. X
cannot be totally paired, since that would mean we have a
component of height 2, contrary to our assumption that U(D)
ijs connected of height > 3. Thus X is of type 3a, say
X el = {X,Y}.

Once again, Ql cannot be totally paired, hence,
proceeding from the right there is a first letter, call it
7 interrupting X,Y. Following Z there may be other letters
from Qi _ we let V be the last of these prior to the next X
or Y. (Of course, we can have Z = V).

Ve begin by trying to preserve this V from Q. If
this step removes a G—factor involving X or Y we break up
the analysis into three cases.

a) If the removed G—factor contained X, then X now has

< 2k—£(X)-2 G-factors, leading to an o(€ /2)

contribution as in step 2.

b) If the removed G-factor linked Y, but Z links X, then
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bound G(X-Z) < ¢ G(Y-Z). Now preserve Qi from Q.

Once again X has £ 2k—£(X)—2 factors, and while

apriori Y has gained an extra G-factor, this gain is

compensated by the loss of the G—factors which X,Y

have in common. Note: we didn’t have to preserve Y

from the dX integration, because we have the factor

G(Y-Z).

c) If both the removed G—factor and Z link to Y, then
bound G(Z-Y) < ¢ G(ZX). Preserve Qi from Ql’ and do the
dY integral first, since Y now has < 2k—£(Y)-2 factors.
(In fact, the gain of G(Z-X) is compensated by the loss of
a factor in common with Y). In any event the X,Y integral
is o(e%).

Ve can thus assume that our attempt to preserve the
above W didn’t remove any G-factors from X or Y. This can
only happen if there is another W linked to X or Y to the
left. We use step 2 to bound the X,Y integral by 0(e %),
and now show that our resultant removal of two G—factors
involving W will yield a proof of (6.3).

If V is of type 1), 2) or 3b) this is obvious, since
they require total pairing without any loss of G—factors.
Thus, W is of type 3a, hence part of a pair Q2 = {U,V}. If
V is to the right of U, the analysis of step 2 gives the
desired result. Even of W is to the left of U, VW has at
most 2k—¢(W)-2 G-factors so that the dV integral is

0[62—[21(—5(")—2](2—[?)] = (/2 0[68(\1)(2—5)]
The dU integral has £(U) = £(w) isolated integrals, and
< 2k-2£(W) € 2k-2 others — hence the total dU, dV integral
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is o(e€*). This completes the proof of Theorem 3.

7. Proof of Lemma 1

Proof of lemma 1: Ve have

(1) 6 = [ e M (x)dt < S "p () = 6,(x)

which gives half of (a). We note that

(1.2)  py(x) = (Tjr)g—feip'xe—tpﬂd2p, £ 50

is a positive, C® function of x, and

(7.3) p (x) < ct ™2/

If |x| # 0, say xy # 0, then integrating by parts in (7.2)

S b'4 =H._¥(\‘C‘
in the dp1 direction gives R

- i i —tpP
(7.4)  py(x) = (21 Xi [P Xt pp pP 2T g%
T

Substituting this into (7.1) we have

. . . 8
(7.5) 6(x) = ;—jr)? % fome"‘tdt [felp *tp, pP2e P dzp)]

in- ® _ 0B
= ;1 J~e1p xplpﬂ—2dp[J; e AbyetP dt]

2
plpﬂ_ 2

- C eip-x
| j~ (/\+pz)2 P

where interchanging the order of integration is easily

justified by Fubini’s theorem since S>1.

Ve write (7.5) as
(7.6) G(x) = _)%I_feil"x Tp 1, g1 (P) dp

where the notation ra.,b(p) will remind us that
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) < {cpaL , |p|<t

T p) £ 1

a’b c _;F s lplzl
Ve integrate by parts twice more to find

(7.7) G(x) = _xcr [elPx rs 3 ge3(P)a2p
1

which completes the proof of (a), since Tg 3 ﬁ+3(p) is
’

integrable.

Furthermore, by (7.7)

ipex -~ 9
(7.8 v6(x) = —¢ e’ X5 r p)d°p + L
) (x) ? S p-3,+3(P) o

-5 [P g, g+
x5 f B-2,6+2

and we can integrate by parts once more to find

. 9
(7.9) VG(X) = ??——felp xrﬁ_ 3’ﬂ+3(p)d P-
1
This procedure can be iterated, and shows that
{
(7.10) voG(x) | < Tcgj;g—

This will provide a good bound for large x. For small

x, we recall (3.2):

(7.11) G(x) = G (x) ~ H(x).
0f course, we have
| l |
(7.12) 1ve6, (x) | < _ngﬂﬂ"

and we intend to show that

(7.13) |A§1, ey BEIL € Haglleg) o vlagl

for |ai| e, |X| 2 4L
Altogether, this will give, for |X| > 4/e

L4
(7.14) |A£1,.“’alG(X)I < laglestla,l —xgtf;n— fon
Combined with (7.10) we have sy ¢ T
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‘ faql - lagl Mo
(7.15) |Aa1,__.’a£G(x) | < -7 g 5 3(%)
which is (2.11). Jn 1R €8
e

We note that rﬂ_2’3(x) is integrable.
From (7.15) we have, for |x| > 4fle

14
£
. G 1 G
(7.16) laiTug . g (al)|Aa1,...,ae (x|
{ a.
< ¢ sup e ) (%)
la; | <e I;[ [ | x| ] #2,3

<ol e

which is (2.12).

rﬂ_2’3(x)

Ve now prove (7.13), (but we first remark that if
8 > 3/2, then H(x) is ¢! and the following analysis can be
simplified considerably)

H(x) = 1p'x A d2 .
) = G2 S e 4P

so that

ip- ipra_
(7.17) aH(x) = c felPX L%““Ell a?p
p” (A+p")

Ve integrate by parts in the dp1 direction to find

C ip-x _d [ eip-a_1 ]d2
e P
5 G

(7.18) s, H(x) =

= C

H(x+a)

feip-x(eip-a_l) r_ﬂ_1,2ﬂ+1(P)d2P
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Since |e'P'®-1| < 2 |p||a| we obtain (7.13) for £ = 1.
Vrite F(x;a) for the integral in (7.18) so that

!
(7.19) A, H(x) = ¢ ) H(x+a)
+ xi F(x;a)
Then,
(7.20) apa H(x) = ¢ ay [Ab[ }1{1 ]]}{(x+a)

1
+C % +b sy, H(x+a)
1 .
+ C[Ab[ % ]]F(x,a)

+ —)i:g— Ab F(X;a)

We study the last term

(7.21) agF(x;a) = feip'x(eip'b—n(eip’a-1)r_ﬂ_1,2ﬂ+1(p)d2p

Integrating by parts gives us

b
(7.22) aF(x;a) = ¢ L F(x+bsa)
1
!
+C % F(x+a;b)
N io-b 9
+ )c{1 felp x(elp a_l)(elp _1)r—ﬂ—2,2ﬂ+2(p)d p

and as before this establishes (7.13) for ¢=2. Iterating
this procedure proves (7.13) for all £, completing the

proof of lemma 2.
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