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1. INTRODUCTION

X, will denote a symmetric stable process of index f>1 in R?, with
transition density function

1
(2m)*

fi(x)= [eirx=e 2p, (1.1)

Here and throughout the paper, we use the abbreviation p? for |p|’.
If

a(B) =] fX,~ X)) dsdt (1.2)
B
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is restricted to sets BESR2 away from the diagonal, then we know
from Rosen [1985B], that as £¢—0, a,‘) converges weakly to a
measure, the intersection local time, supported on {(s, t)|Xs=X o

If we let

0 (T)={ [ fUX,— X)dsdt (1.3)

Oty
[ a——

then o (T) will blow up as ¢—0. In particular we note

Iep T o1
TR o g1

E(a(T)) +0(1). (1.4)

The following theorems describe the asymptotic behavior of a(T)
more precisely. B, will denote a generic Brownian motion in R, and
convergence in law in the following theorems refers to convergence
as processes in C(R,,R?) equipped with the topology of compact
convergence.

THeoreM 1 If 1<f<4/3, then
e 32 [a(T) — E(a(T))] (1.5)

converges in law to ¢(f)By where the constant 0 <c(f)< oo is given by

=t ([ () (s~ g e dpda. (16
ot JI\P 4 \p+d® PP+df pet T

THEOREM 2 If f=4/3, then

1
—————T[a(T)—E(a(T 1.7
e Lo T) — e T))] (L.7)

converges in law to c(4/3) By, where

2 _ 3 (Tap)y
U= (—F(2/3)> . (1.8)
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THEOREM 3 If [>4/3, then

o%(T) —E(2(T))

converges pathwise to a finite random variable.

Theorem 3 comes from Rosen [1985B], where the limit, the
renormalized intersection local time, is studied in detail.

The main purposes of this paper is to prove Theorems 1 and 2.
These theorems were inspired by the following theorem of M. Yor.

THEOREM 4 (Yor, [1985]) For Brownian motion in R3,

L (D) —Eamy)] (1.10)

V18(1/¢)

converges in law to l/ﬁn Br. |

Yor’s elegant proof uses stochastic integrals. In order to prove
Theorems 1 and 2, we are forced to develop a completely different
approach. We will see that our method also yields Theorem 4.

2. SKETCH OF THE PROOF

We will use the method of moments. With the notation
{Y}=Y—-KY) 2.1

and X(s,t)=X,— X, we have

1 st 2
:——(27[)4" ‘U.,, e Ipj IE(jDI {e piX( J‘tj)}>dsj dtj d2pj (22)

by

E({o(T)}*")

where Dy ={(s, t)|0§s§t§ T}, and an analogous expression for (2.2)
in the case of Brownian motion in R3.

The precise form of the expectation on the right hand side of (2.2)
will depend on the relative positions of the s and ¢’s.

In general, the set U j[spt;] will have several components, and
the expectation in (2.2) will factor.
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A component which contains m intervals of the form [s;,t;] will be
said to have order m. The main point of our proof is that the
dominant contribution to (2.2) comes from regions with n compo-
nents of order 2.

More precisely, for each ordering of the s;s, if we hold fixed the
initial points

Uy <ty < <u,
of the n components, each component will contribute a factor

ﬂzi) +o(h(e)) (2.3)

where
[cB)1g(1se) it p=473
1
Ho)=4 B = i B<43 (2.4)

1

27Tllg(l/s) ifd=3

where d=3 refers to Brownian motion in R?. (The dependence on
the initial points u; is essentially contained in the o(h(e)) term. For a
precise statement, see the remark following Lemma 1.)

Thus for each ordering of the s;s, the n component term in (2.2)
will contribute

n

(E(ze“)“(h(g”)"os,, frol duydu= (e orol).  (29)

w<T 2"n!

Since there are (2n)! ways to order the s;’s, the total contribution to
(2.2) from n component terms will be

(2n)!

2"n!

(W) T)"+ o(h"(e)). (2.6)
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We will show that terms with less than n components are 0(h"(g)),
thus

BT} =y (HE)TY + o0 e
so that
WD)\ @0,
[E({\/@} >—> ot T as e—0 (2.8)

which is precisely the 2nth moment of a Brownian motion Bi.
Furthermore, it follows from Rosen [1985B] that if b<c

%,(La,b] x [c,d])

converges as ¢—0 to a random variable (having bounded moments),
so that {a(T)}//Me) has asymptotically independent increments.
(2.8) now shows that all its finite dimensional distributions converge
to those of By, and our theorem will follow by standard methods.
(See the remarks at the end of the proof.)

3. ASYMPTOTICS FOR COMPONENTS OF ORDER TWO
We have

E({eip)((s,t)} {ein(s’.t’)}) — [E(eipX(s,t)+in(s’,t’)) - [E(eipX(s,t))IE(ein(s',t')). (3 1)

We assume s< s and distinguish two cases

I. s<§' <t'<t, so that (3.1) becomes

e PPlarayglptalfo o (rf+ahiby (3.2)

with a=5"—s, b=t -5, c=t—t.

I s<s'<t<t, and (3.1) becomes

e-p”a(e-Ip+q|"b_e—(p”+q”)b)e—q”c (3.3)

with a=s"—s, b=t—¢, c=t —t.
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The following three lemmas will yield the asymptotics for compo-
nents of order two, (2.3), (2.4). Here § denotes the initial point of the
next component or T if we are studying the last.

LeEmmMA 1
1 _”.j dadbdc”e‘l”’(‘”s)e*lp+q|”be—q“(c+e)d d
(2m)* a4pitss—s ' P (3.4)
3 [L(1/3))\3
|:32n2 <%> +o(1)]lg(1/s), B=4/3

1 1 1 1 1
_ = T il -
|:(27r)"' jfpﬁ ]p+q|ﬂqﬂe pdq+o(1):|84/ﬁ_3, p<4/3

and the analogous expression for Brownian motion in R® gives

1
——+o(1) |lg(1/e). 3.5
[(Zn)2+0( )] gty O (3:5)

Remark In this and the following lemmas convergence will be
uniform for §—5=0>0, for each fixed >0, while a bound of the
order of the right hand side will be obtained independent of §. This
is sufficient for our purposes.

Proof We shall often make use of the simple bound

T s c
fe"’dt < (3.6)
0

T140F
Step I We can always assume that |p|=1 in (3.4), for the

contribution from |p|§1 is (1) as follows from (3.6) and the
Cauchy—Schwartz inequality:

1 1 1
—_— %< | d%g< .
f1+|p+q|ﬁ1+q” q—f(1+qﬁ)2 q

Similarly, we can insert or remove at will a condition |g|> 1.
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Step 2 We can remove the condition a+b+c<5—s=1y, since the
contribution from a+b+c=y is 0(1). For the latter condition
implies that one of a, b, or ¢ is =7/3, which allows us to bound one
of the dp or dq integrals independently of ¢, while the other integral
can be controlled in Step 1.

As a result (3.4) is

1 1 1

1
(2m*, x”:p—‘*lmql”q_"e e dpdg +0(1), G
pl2

Step 3 If B<4/3, we scale (3.7) to obtain

1 1 1 1 1
—_— — e — e P+ pga. 3.8
73 2m)* Lsasp? p+4lf ¢ pad (3.8)

We now show that the integrand in (3.8) is integrable—i.e. without
the condition |p|>¢'#, which establishes Lemma 1 for f<4/3.

a+p—d d—a d—p
11 r< 2 >r< 2 )r( 2 ) 1
— —d :nd/z (39)
rraP ¢ a+p e
F(d———2~—>l“(oc/2)l"(/3/2)

for o+ f =d, Donoghue [1966, p. 158], so that

IS S e ¥ 1 1
— e P11 ’dpdq<J‘~——<J‘—*dq>dp
J J p* [p+4® ¢* p* \J)p+d’d

e
C md2p<oo
p

lIA

since 3 —2<3(4/3)—2=2.
If f=4/3, we first show that we can eliminate the factor e *¢ in
(3.7). We use

[1—e | <eg? (3.10)
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and (3.9) to bound

j E:E_pﬁj_l__l_“_e—eqﬂd d
wer 0F ) p+d’ e

eer 1 1
<& J — dqdp
lpljél PP Jlp+af ¢#7°

Pt
see? | —d?p
lplz1P

e ?
:Cj‘p_z—:gdzp< 0.

A similar analysis applies to Brownian motion in R3.
Returning to $=4/3, we use (3.9) to evaluate

—spﬂ

2

1 P 1 1 m r(1/3)>3
—dg ldp= d
G b P (J p+af & ") P=ny (r(2/3) s 7 4P
K <r(1/3)>32
“ent \TeR)) ",

B (r(1/3)>3 2n
B

EZaNTOIE)

which establishes Lemma 1 for §=4/3.

_pdr

r

—>+o(1)

(3.11)

Finally, we evaluate the analogous expression for Brownian
motion in R3, We have a factor 1/(2m)%, since d=3, and the con-

vention of having p?/2 in the exponents leads us to

8 g2 ( f 1 1 >
—-dg )d
(2n)6|p|j;1 P’ lp+4|* ¢* 1)

873 —ep?j2

e
S L,
(2m)° |p|j; : p

87[3.47I°0 -2 dr_ 1 1g<1

[e —)+0(1)

T2t k& ro@2n)? C\e

completing the proof of Lemma 1.

(by (3.9)),

(3.12)
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LEMMA 2
1
o [[f  dadbdc [ —eratoe= 0 +dbe=dc+agp 4q
a+b+csS-s
9
[374—7?+0(1)] 1g(1/¢), B=4/3
1 1 1 1 1
_ =P +ah -
[(2n)“ Hp“ v dpdq+o(1)] b pdp3

and the analogous expression for Brownian motion in R® gives

[#wm] lg(1/e). (3.14)

Proof Arguing as in Lemma 1 we are reduced to evaluating

1 1 1 1
~e(pf+q¢P) 32 12
(2n)4p"’+q"§1? Pﬂ+qﬂ —‘;ﬁe rr . (3.15)

f <4/3 is handled precisely as before.
If f=4/3, change variables
{x =|p|"
y=|q*?

so that (3.15) becomes

1 3\2 —¢(x? +y2)
W <5> (27[)2 “. —e dx dy

2o X*+)?
Zyy2py

1 3 277:00 _Brzdr 9 x© _rzdr
e Il e L
2m)*\2/) 21 r 32ng r

9
=64—nlg(1/e)+0(1).
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For Brownian motion in R® we need to evaluate

8 1 1 1 2. 2
_ _ "~ ,-&ptte )/2d3 d3
@ e PR P
) e*a(x2+y2)/2
“(2n )6( W M, e
xZ+y2z1
® sn? Tig(1/0) + ()
¥
~(2m)®
4 1g(1/6) +0(1)
= €
@n? ©
completing the proof of Lemma 2. O

LemMma 3:

2m)*a+

[4

and the analogous expression for Brownian motion in R? gives

1 1
[ 2m)* ” <|p+ql” P +q

84/[3 3

+o(1) ]lg 1/¢).

>e_"’“"”)dpdq+o(1)]

4
[@T‘)‘g‘i” 0(1)]18(1/8),

j” dadbdc ”(efp"(aﬂﬂ)(e‘|p+ql"b_e~(p’+q“)b) e‘“’ﬂdqdq
btc<s—s

p=4/3

B<4/3

(3.16)

(3.17)
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Proof We first observe that for x,y>0, arguing separately for
x2y and y=x, we have

Je—erar]< e —e | de g %—%’ (3.18)
while
1 1 c _
‘—|p+qlﬁ—p—_—ﬂ+qﬂ éq—p;;‘, if |p| <|q|/4. (3.19)

We first consider processes in R2. Brownian motion in R* will be
handled later by different means.

Step I We can assume |p|2 1, for the contribution from |p|<1 is
0(1). To see this we may certainly take |q|g4. Then using (3.6),
(3.18), (3.19) we bound our contribution by

lpl < c )
dq ldp < 0.
i1 (1+pP)? lqugét ¢! 1)

Furthermore, since

L

IPILI A+ 1gzm (p+9)

dgdp<1

we can, if we wish, also assume |q|= M.

Step 2 We can remove the condition a+b+c<§—s=1y, since the
complement contributes 0(1). To see this, note that it suffices to
check |p| <|q/4, since if || <4|p|, we use

(3.20)

and can then use the proof of Lemma 1. If a or ¢=y/3 we can use
(3.18), (3.19) to obtain the bound

e V300

1
Pl | —erda<co.

]

21 p** ldlz2M 4
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If b= 7y/3, we first integrate out dg:

_ c
fertrraldg=rapy.

Step 3 If B<4/3, we scale to obtain

1/ 1 1
11 e~ P+ dpdg. (321
7 Gy, 477 <|p+q|” p”+q> # G20

gl/B

We show that the 1ntegrand in (3.20) is integrable. If |g| <4|p| we can
use (3.20) and the proof of Lemma 1, while if |p| <|g|/4 we use (3.19)
to bound by

J‘J (IPI)Z/Se‘("”+“ﬂ)dpdq=Jf—l~— _l*e“l’”q”)dpdq< 0
77 qﬂ |q| p2f-23 gF+2/3

since
28—2/3<2(4/3)—2/3=2
and
B+2/3<4/3+2/3=2.

This completes the proof of Lemma 3 for §<4/3.

If B=4/3, we first show that the factor e "*¢ can be dropped. As
before, via Lemma 1, we can assume |p[§|q|/4, so that using (3.19),
(3.10)

e ” | 1 1

p+aff PP+q°

e~
sce [ —5lp l(lqu PASE adq)dp

lpfzt P z4|p|

1—e*|dpd
Iplz1 Pzﬂ I ¢ I ped

e’

<cel? j'
lplz 1 P

—dp=0(1).
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We now calculate for f=4/3
1 e~ [
— s e-'p+q""’—e-w"+4">bdb>d dp. 322
@ il 7 (5) “p G2

We interchange the dbdg integration which is justified by Fubini,
using (3.18), (3.19) as above—as long as ¢>0.
With

f=[e?d?q= 27r§e"4/rdr—

O 8

2n —s 21 _27:
— e s ds=—T(3/2
8 B (3/2)

=”\B/’? . (2B=3/),

we see that (3.22) equals

1 e W (0] e ?
S G s 7 (5 b7 ‘"’)dz”

1 ©]_eg7b e
L il S d
f(27t)4<£ b?/# >np|jg1 2 7

© -
f(2n)4<(j, p2i8 db) B lg(1/e) +0(1).

We next recall the standard calculation

1 ©
db= dbds= (12 ri/2)y=2/=.
[~ W7 sf\/(/) I\/’(/) Jr
Putting all this together, (3.22) gives

nf

G B o 2 Rl (1/6)+001) = 1 1g(1/0)+ 1)

4np?
_2 lg(1 1
=181/ +0()

which completes the proof of Lemma 3 for f=4/3.
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For Brownian motion in R® we proceed differently. We first
integrate dq dp to obtain

1
@ ”e*pz(a+c+8)/2(e—Ip+q|zb/2_e—(pz+q2)b/2)e~sq2/2 dsdp
1 - 2!1 cCTE —q2 £
=(27‘c)6 je pilatbt+c+ )/Z(j'(equ__l)e q°(b+ )/qu)dp
1 1 1 1
T3 (b 3/2 bz \372 - b 372
(2n)® (b+e) <a+b+c+s— ) (a+b+c+e)
b+e
(3.24)
We next integrate out dc, then da to obtain first
2 1 1 1
— 0(1
(20)° (b+2)" FN7 @ibrg? o0
a+b+s—b+8

and then

4 1 / b?
(ZR—PW[,/IJ'FE— b+8—ﬁ:|+0(1)

4 |: ! ,/2sb+£2:|+0(1)'

T@2n3|b+e  (b+e)?

Integrating the first term gives (4/(2r)%)1g(1/¢) +0(1) while the second
term is bounded by

SN
g(b+£)3/2+(b+5)2 db=0(1).

This completes the proof of Lemma 3.

Putting Lemmas 1, 2, 3 together we get (2.4) with
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B 1 1<1 1 1 1 e s
JEE——— i (T | pe——— Pt L Y P |
2 Tt ) P\ P\t PP+dP)° P

11 <1+1>2< 1 1 )_(p,,ﬂ,,)dd
= s+ |l————F e .
22m* JJ\P &) \p+9)? PP+4qf P

In the proof of our lemmas we have verified that (3.25) is
integrable. We now show that ¢?(f)>0. This follows from the
following bound, where r=(|p| A |g|)/(|p| v Jq)) <1:

1 1 2= d¢ B
<<l = [ ————
1+r 25 /1 —rsin?¢

(e Y
20 /1 —2rcos¢+r?
| 2z do

“2n (j; (\/1—2rcos¢+r?)#

where the equality comes from Gradshetyn and Ryzhik [1980], p. 387.

4. BOUNDS ON COMPONENTS OF ORDER 23
In this section we will show that a component of order m contributes
o(h™?(g)). 4.1

We can assume that our component contains the intervals [s;¢;],
1< j<m and we relabel these 2m points by

MErRs"Zrm
We write

Ip;X(sjt)=ZuX(r,ri ) 4.2)

so that each u; is a linear combination of the p/s. Using inde-
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pendence, we have

(P X6 1) = ¢ “Efriv1-r) 4.3)
Using (3.6), it would suffice to bound

| E(e, p)IT——dp (4.4)

1+uf
by (4.1), where
E(e,p)=e~# (4.5)

We begin by deriving such bounds whenever possible, but we will
see that for certain orderings of the points s;,t; we will need a more
delicate analysis (sec (4.18)).

Let us define

F={i|r;=s, for some j}

D=F*={i|r;=t, for some I}

R={i|r;=s;, and [s; ;] contains only points of the form r,, l€ F}.

In the latter case, we say jeR, and shall refer to [s5t;] as an
interval in R, whose height is the number of points in [s;t)), so that
e.g. if r,=s,, r,=s,, r3=t,, then [s,,¢,] is an interval in R of height
2, with 1¢R.

We will use notation such as uy to denote {u;};.p. It is easy to see

that uy is a nonsingular linear transformation of the p;s. It is shown
in Rosen [1983] that

spanup,=span {p;};.z. (4.6)

Consequently, if R=¢, u, is also a nonsingular linear transformation
of the p;’s, and (4.4) is actually 0(1):

1
s
Jnl+u” P= fe 1+ufjgpl+u” P

|0 v g

1+u”|

< 0
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since

1
jmdu< Q0.

As we shall see when R+# ¢, we shall have to shift some of the
factors between the two products in (4.7) (we refer to this as
“borrowing”), before performing the Cauchy-Schwartz bound of
(4.7), which we will refer to as the initial Cauchy-Schwartz inequality
(since in general it will be followed by other bounds). The details will
become clearer as we proceed.

We will deal first with $=4/3, in some sense the hardest case, and
later explain what to do in the other cases.

Assume that R={i} and that the single interval [s;¢;] in R is of
height k=4. Let L={i,i+1,...,i+k—1} and write (I!=F —L),

1 1 1 1 1 !
<
l;[ 1+uf lp—[ 1+uf=c<l;[ 1+uf l:[ 1+u}'°3><l;I 1+ud3 I;[ 1+uf>'

(4.8)

We apply the initial Cauchy-Schwartz inequality, and the first factor
is bounded as before. To bound the second factor we use Holder’s
inequality

1 1 k 1 1
(JEI (1+uf3)? IJ (1+uh)? dp) §_1161 J(1+u?'3)2k l;[ (1 +ub)? dp < 0.

(4.9)

since, if k=4, (0.3)2k> 2, and each u,, le L contains p; as a summand,
so that uy,,, is a non-singular linear transformation by (4.6).
If |R|>1, with all intervals in R of height >4, we can handle each
interval in R successively.

Assume now that R={i}, and the single interval [s;t;] in R is of
height 3. We first do the dp; integral: for definiteness assume u;, , —u; =
Poolivry—Uir 1 =D

1 1 1 J
1+uf 1+uf, 1448, &
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1 1 1
J1+P§’ 1+(Pj+Pk)ﬂ 1+(Pj+Pk+P1)B !

||/\

1 1
j <1 +p? 1+(p; +pk)"’2><l +p8? 1+(p;+py +p1)”/2>

1
d
<1+(p +p)*? 1+(p,+pk+p)”’2> Pi

cl|-llsf}-ls 11 ls

1 1 1
= H(p,, 4.10
T pi 0 197 T+ (et p)™ o PP (410

IIA

c

since 38/2=2, and e.g.

1 1 i
dp,< . (4.11)
Jlﬂﬁ L+(p;+p)* T 1+pE7?

If we were now to apply the initial Cauchy-Schwartz inequality,
we would be (barely) divergent—so we must borrow from u;,;
which contains both p,, p; as summands. Write

1 1 1 1
— - H(p,,
<sgt T+l (Pwp)- 1+ l+3><l+u,+3 ,IJDSiwLuf)
i+

and now apply Cauchy-Schwartz to easily bound the resulting
integral. (Note: we have previously integrated out dp)).

As before |R|> 1, with all intervals in R of height 23 presents no
new problems.

Consider now R={i}, with [s;t;], the single interval in R, having
height 2. We shall find that our integral (4.4) now diverges—but only
as 0(lg(1/¢)).

Let u;, , —u;=p,. We first integrate out dp; for the bound

1 1 1 1 1
dp,= dp;Sc—. (412
J1+uﬂ1+u,+1 P j1+p}”3 1+ (p,+p)*" Fi=15 2 (412
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We now borrow from u;, ,, which contains p, as a summand:

1 | 1 1 1
—_— . 413
<1L_c[ 1+uf 1+p3 1+u}i32>< l;l 1+uf 1+|u,-+2]> (413)
1#i+2

Before applying the Cauchy-Schwartz inequality we make a
general comment: If {v;} is a non-singular linear transformation of
the {p;}, we have

Zof <cZpf (4.14)

since both sides are homogeneous of order f, continuous, and non-
zero on the unit sphere. Hence we may always bound

F(e, p) < F(ce,v). (4.15)

With this tool, we apply the initial Cauchy-Schwartz inequality,
then apply Hoélder’s inequality to the first factor to separate out p,
and u;, , and finally use

J f+—pzdp=0(1g(1/s)). (4.16)

All this shows (4.4) is O(Ig{1/g)).
As before we see that if |R|>1, if all intervals in R are of
height 22, and if there are k intervals of height 2, (4.4) is bounded by

0(lg“(1/e)). (4.17)

This clearly satisfies (4.1)—unless m is even and k=m/2.

Notice, however, that for each interval [s;t;] of height 2, if
5;<s;<t;, then t; cannot be involved in any interval of type 1 or 2,
so that except when ¢; is the last point in our component, we obtain
extra convergence producing factors.

Finally, we turn to consider intervals in R of height 1 (the isolated
intervals of Rosen [1985a]). It is here that the reduction to (4.4) is
insufficient. We must recall that our original integral, (2.2), involves
the subtractions { }. We first integrate out dp;, if [s;,¢;] is an interval
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of R of height 1. After applying (3.18) we bound

1 1
”|p+qiﬁ | =0 (4.18)
as follows:

If |p| £4|q| we use the bound

1 d*p
gl P =004 7). 4.19
ipl2aal [P+4[° P~|pl§f5|ql I (lal*~") (4.19)

While if |g|/|p| < 1/4 we use (3.19), (with p, q reversed!) to bound (4.14)
by

1
lal ], rerdp=0laf"). (4.20)
q

lp|z4

Thus if r;=s;, the dp; integral is O(u?"f), but u, ., =u;_,, and these
contribute a factor of 1/(1+uf_,)>—altogether 1/1+u??;2. Since
3—2>p (as long as f>1), the isolated interval actually increases
convergence in comparison to a component from which it is excised.
This shows that all our previous bounds hold (in fact are improved!),
in case removal of all isolated intervals brings us to the cases
considered above.

All that remains is to consider the case where removal of an
isolated interval creates a new isolated interval (nested intervals), e.g.
51<$,<s3<tz<t<t;<.... If we have such a “tower” of nested
intervals, we know from Lemma 3 (or (4.14)) that integrating the
inner two will give a factor.

0(lg (1/2)),

while outer intervals will be convergent. It is clear that in a
component of length =3 not all intervals can be in the form of
doubly nested intervals—and this completes the proof of (4.1) in case
f=4/3, and therefore of Theorem 2.

When f<4/3, the basic approach is similar, but now intervals
[s5t;] in R of height >3 may be divergent. To control them write,
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instead of (4.8)

1 1 1 1
(ILI 1+ub FLI 1+|u,|><rLI 1+uf ! l,—,[ 1+u,’.’>'

Applying the initial Cauchy-Schwartz inequality, the first factor
gives rise to an innocuous power of lg(1/e), while the second factor

as in (4.9) contributes
P cuf 121

If 20— 1) =2, (4.17) is at most 0. /ig(1/e), while if 21(8— 1) <2, we

bound by
e-suﬂ d 1/2 1
~5ig—1 U =CH3 i =1n"
LT RSV /B H1-1/B)

To show this is

1
o(h"*(g)) =0 (m)
we need only show

(2/p=3/91>1/p—1(1-1/B)
ie. (I-1)/>1/2, ie. B<2(I—1)/l which is true if /=3. These ideas
suffice to prove Theorem 1.

The case of Brownian motion in R? can be treated almost
identically with f=4/3—except that the analogue of (4.18)—

”j’(e—b(pw)Z/Z —e"’“’z+"2)/2)e_"2/2d3pldb =0('q|) (4.22)

must be proved differently.
The inner integral can be done explicitly:

e—bqZ/Zj'(e~bp-q_ l)e—(b+e)p2/2d3p

=e—bq2/2(eq2b2/2(b+e) —)/b+ 8)3/2.

STOCH. - F
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This is positive, and only increases as ¢ decreases to 0, hence the
inner integral in (4.22) is bounded in absolute value by

1—e b2

b3/2 >

so that the integral in (4.18) is bounded by

—ba? _
© 1—p bq®/2 © 1_e b/2

proving (4.18), since [§ (1 —e~*2)/b*?)db is finite, (in fact = /27 as
in the computation following (3.23)). This completes the proof of
Theorem 4.

Remark By following the above ideas, and keeping track of S, T
it is easy to see that for some y>0, and all n,

(XB(T)-GE(S)>2"
g 22N < cp_sym,
<  h(e)

This establishes tightness, Billingsley [1968, Theorem 12.3], and
completes the proof of our theorems.
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