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JOINT CONTINUITY OF THE INTERSECTION LOCAL TIMES
OF MARKOV PROCESSES!

By JoY ROsSEN
University of Massachusetts

We describe simple conditions on the transition density functions of two
independent Markov processes X and Y which guarantee the existence of a
continuous version for the intersection local time, formally given by

a(z, H) = ]H]s,(Y, - X,) dsdt.

In the analogous case of self-intersections a can be discontinuous at
2z = 0. We develop a Tanaka-like formula for a and use this to show that the
singular part of a(z,[0,T1?%) as z — 0 is given by

T
2/0 U(X, -z, X,)dt, as.,

where U is the 1-potential of X.

1. Introduction. In two and three dimensions, but not in four, a pair of
Brownian paths will intersect, and each individual path will intersect itself
[Dvoretzky, Erdos and Kakutani (1950)].

The purely formal expression

(1.1) ' ijs(Y, - X,)dsdt,

where § is the delta “function” can be thought of as quantifying the intersec-
. tions of two independent Brownian paths X and Y over the time set H. For
self-intersections we take Y = X.

In previous papers [Rosen (1983), and Geman, Horowitz and Rosen (1984)] we
have shown how to give meaning to (1.1) as the z = 0 value of an intersection
local time a(z, H) which is jointly continuous in (z, a, b, ¢, d) where H =
[a, b] X [, d]. (As we will explain shortly, for self-intersections we must require
¢ > b.) The main goal of this paper is to generalize this and related results to
general Markov processes.

Let us first recall the definition of local time. Let X and Y be two Markov
processes in R<. The process

(1.2) Z,,=Y,-X,
defines, for each H C R2 a measure pu on R% _
(13) u(A) = Ao(Z(4) N H).
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660 J. ROSEN

A, denotes Lebesgue measure on R”. If p, < A, we say that Z has a local time
on H, and

(1.4) o(z, H) = %’j(z)

is called the local time of Z on H, or the intersection local time of X and Y on H.
Note that

(15) [ J1G= X)) dsde = [{(2)edz, H) dhy(2),

for all bounded Borel functions f, so that formally taking f = § we can identify
(1.1) with a(0, H). Of course, (1.4) is only defined for a.e. 2, so that we must first
produce a continuous version of a(z, H) before we can even begin to talk about
a0, H).

Sufficient conditions for the existence of the intersection local time for
independent Markov processes are contained in Dynkin (1981). In Theorem 1 we
describe simple conditions on the transition density functions which guarantee
the existence of a local time a(z, H) which is jointly continuous in (z, a, b, c, d).

For applications, in the Brownian case such a jointly continuous local time
leads to an easy derivation of the Hausdorff dimension of {s, t|X, = Y}, and has
allowed Le Gall (1984, 1986) to prove a conjecture of Taylor on the more detailed
Hausdorff measure of the intersection points. In the general Markov case we will
see that the small time asymptotics of the transition density functions provide a
lower bound on the Hausdorff dimension of {s, ¢|X, = Y,}. For details on such
asymptotics see Azencott et al. (1981). (A complementary upper bound can
sometimes be derived from the continuity properties of the paths.)

For Brownian intersections we developed a Tanaka-like formula for a(0, H)
[Rosen (1985)], which has been refined and extended in Yor (1985a). Our
Theorem 3 presents such a formula for general diffusions. Assume that X
satisfies the stochastic differential equation

(1.6) dX, = o(X,) dW, + r(X,) ds.
If p,(x, y) is the transition density function of X, then
[~2]
(1.7) Ulx, 7) = ["e iz, y) ds

defines the 1-potential of X.
Our Tanaka-like formula reads

- o(0,[a, 8] x [e,d]) = [V(X,, X dt ~ [V(X,, %) at
- - [fo(x,) [*VU(x,.Y) dtaw, - [*[V(X,,¥,) deds,

where the various terms are defined more carefully in Section 3.
In studying self-intersections, Y = X, we must require that H not contain the
diagonal (e.g., ¢ > b). Our work on Brownian motion shows that without this
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condition the local time a(z, H) is discontinuous at the origin [Rosen (1986) and
Le Gall (1986)]. Moreover, we are not really interested in the diagonal, which
causes the tautological X, = X, to register as true self-intersections. In Theorem
2 we obtain a jointly continuous (self)-intersection local time off the diagonal for
general Markov processes.

For planar Brownian motion Varadhan (1969) has shown how to renormalize
(1.1), so that it can be given meaning even for H containing the diagonal. It is
not hard to show (see Section 4) that a(z,[0, T']?) is jointly continuous in T, z
for z # 0. Renormalization says that

T
(1.9 a(2,[0,TT) - ?;;—lg(i—')

has a continuous extension to all z. This extension, evaluated at z = 0, is the
“renormalized” version of (1.1). Since
U(2,0) - ~1g| -
(20 = el
is continuous, renormalization tells us that the singular behavior of a(z,[0, T']%)
is given by 2T'U(z, 0). \

In Rosen (1985) we presented one approach to this renormalization using our
Tanaka-like formula for a(z, H). Additional approaches are in Dynkin (1985)
and Le Gall (1985), while Yor (1985b) describes a renormalization for Brownian
intersections in three dimensions. In Section 4 we generalize our approach, via
Takana’s formula, to a class of diffusions which includes planar Brownian
motion. We will see that the singular behavior of a(z,[0,T]%) as z = 0 is given
by

T
2 f U(X, - 2, X,) dt.
0
For results on the continuity of local times for (one-dimensional) Markov
processes themselves, i.e., not intersections, see Getoor and Kesten (1972) and

Berman (1985). It is especially to the latter that we are indebted for certain ideas
in this paper.

2. Joint continuity. We consider first the intersections of two independent
time-homogeneous Markov processes X and Y, with respective transition densi-
ties p and q. For simplicity, we assurne X and Y start at the origin.

A" will denote the h-difference operator in the ith argument, e.g.,

Ny f(x, y) = f(x, y + h) = f(x, ¥).
THEOREM 1. If for some 8 > 0,
21) [suwlpx, )l ds = O(A?),

T .
(2'2) '/(; Sup "A’zps(x’ ')"2 dS = O(lhlﬁ)’ 1= 1’2’
X
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as h > 0, and similarly for q, then Z, , = Y, — X, has a jointly continuous local
time on [0, T2

REMARKS. (i) Since for any ¢ > 0,

t+h h
[ supl|p(x, )y ds = ["sup
vt x ) 0 x

[pdx, y)ps( y,+)dy 'L ds

< [sup [pix, Db, s

h
< )|, ds
fO St;pllps(y )
we see that (2.1) implies
T :
(2.3) [ suplpy(x, )|, ds < oo
0 x

(i) Our proof will show that (2.3) for both p and ¢, and (2.2) for one of them
suffices to guarantee a local time continuous in the space variable. (2.1) for p and
g then provides continuity in the respective time variables.

(111) For p symmetric (2.1) is

' fsup\/ps(x x) ds = O(h*).

(iv) It is easy to check that the conditions of Theorem 1 are satisfied by
d-dimensional Brownian motion if and only if d < 4.

More generally, let X be a. diffusion satisfying the stochastic dlﬁ'erentlal
equation

(2.4) dX, = o(X,) dW, + r(X,) ds,

where o, r are smooth and bounded together with their derivatives, and where
o(x)o*(x) = A,

for.some A > 0 independent of x. We will refer to such a process as a smooth

uniformly elliptic diffusion. The transition density p,(x, y) is smooth for ¢ > 0
and satisfies the following bounds:

(2.4&) ‘ pt(x, y) S‘Mt_d/ze—“lx—ylz/t’
(2.4b) ?(_x, y) < Mt_(d+1)/2e—alx—y|2/t’
xX;
apt L2
(2.4c) E(x’ y)| < Mt~ (@+V/2g—al=o" /8,
J
ap, ’ .
(2.4d) Fyr (x’ y) < Mt—(d/2)—1e—a|x—y| /t’
[ aed}

for some positive constants a, M [Dynkin (1965), page 229]. It follows easily
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from this, arguing separately for |[h|% < ¢ and h? > ¢, that for any 0 < 8 < 1,

(2.4e) Ipt(x +h y) _p‘(x’ y)l = M|h|8t_(d+s)/2(e_“lx—ylz/t + e;alx+h—ylz/t),
with a similar inequality for differences in the second coordinate, and
p op,
T+ Ry ) = ()
(2.4f) X x;
< M|h|5t“d+1+8)/2(e-alx—y|2/t + e‘“lx"‘h—ylz/t).

It follows easily from these bounds that the conditions of our theorem are
satisfied if X, Y are smooth uniformly elliptic diffusions in d < 4 dimensions.

PROOF OF THEOREM 1. Let f € CP(R?) be an even positive function nor-
malized so that [f(x)dx = 1. Set f(x) = e %f(x/¢) and for ¢ > 0 define

a(z,H) = [ [[(Y,- X, - 2) dsat,
where H = [a, b] X [¢, d] C [0, T']%. We will prove that locally
(2.5) la(z, H) = a.(z', H')| < ¢,|(s, 2, H) = (¢/, 2/, H)[',

for some y > 0, where we have used the abbreviation (¢, z, H) for (¢, 2, a, b, ¢, d).
This will insure the existence and joint continuity of

(2.6) a(z,H) = lin(l)ae(z,H),

with convergence (locally) uniform in z. Consequently, for any continuous
compactly supported g we have

fg(Z)a(z,H)dz = lii%fg(z)ae(Z,H)dz ~
N }i_?(l)fofg(z)fe(Y; - X, — z) dzdsdt
= lim [ [f,+8(Y%,~ X,) dsdt

= f [e(¥.~ X,) dsat.

This identifies a(z, H) as the local time of Z, , = Y, — X, on H.
To prove (2.5) we will show

(2.7)  E{af(z,H)—a.(2’,H)}" <c,|(e,2z, H) = (¢, 2", H’) "™

for all even m. The multiparameter version of Kolmogorov’s lemma [Meyer
(1980)] then yields (2.5) locally, first for rational arguments, but consequently for
all arguments since a(z, H) is clearly continuous when & > 0. [Locally means
regions of (¢, z, H) space of the form {0 < ¢ <1} X {||(z, H)|| < n} for each n.]
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(2.7) will be proven by establishing the following three bounds:
28) ' E{afz H) - a2, H))" < o,(H) — (H)[™,
(2.9) E{a (2, H) — a(2’, H)}" < c,lz — 2’|™,

(2.10) E{a(2,H) - a,(2, H)}" < c,le — &'|"™.

We first turn to (2.8), and note that

|a(z, H) — a(z, H')| < a(z, HAH"),

where HAH’, the symmetric difference of H and H’, consists of at most eight
rectangles, each of which has (at least) one side of length < |(H) — (H’)|. It
therefore suffices to show

(2.11) E{a(z, H)}" < c,[(b—a)(d - c)]*",

for all rectangles H = [a, b] X [¢, d].
We now compute

E{a(z, H))"
=fmf5(f[1f,(Y}i—Xsi—-z))d3dt |
[ feere <,,m<,,}e(ﬁf,(xi - x,-2)| e

[e,d]™ =t

(2.12) m
- m!ZmeE(er(lQ'i - X, - z)) ds dt
= m!szm[(ijT(Y)ﬂ(Y,, — X - 2)Py(X) dXdY) ds dt
= m!ZfFl(X)fmf(fQT(Y)pS(Y, +eX — 2) dY) ds dtdX,
where .
PS(X) = psl(o’ xl) e ps,,,—s,,,.,l(xm—l’ xm)’
Qr(Y) = (Izl(oy n)e Qt,,,-—t,,,_l(ym—d’ Im)s
F(X) = [T,
i Y;r=(y1r,""’ y;rm)’

H"={a<s < -+ <s,<bec<t;< - <t,<d},

and the sum I, extends over all permutations = of {1,..., m}.
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Now using (2.1) and (2.3) we have

mef(fQT(Y)Ps(Y, +eX —2) dY) dsdt

< [, J1@rlal Pl ds

< mefPI"[l(iup lae-e (21, )||2)(iup| Pa—o(%io15 ) ||2) ds dt

< k[(b-a)(d-e)]™,

which establishes (2.11)—and hence (2.8).
We now turn to (2.9). We compute as in (2.12), with § = 2’ — 2,

E{a(z’, H) - a2, H)}"
=2 LS| e )

X (Y, — X — 2)Py(X) dXdY) dsdt

-mx frenf, f{fe(fi)e)

X (Y, + eX — 2) dY) dsdtdX.

(2.13)

Once again we have

[ J(fasto((112)
< [ J1axls

We now use a device contained in Berman (1985).

(Y, + eX — 2) dY) dsdt

(2.14)

m
ras

dsdt.
2

m

[ A}Ps(X)

i=1
can be written as a sum of 2”72 terms of the form

m/2

8 — — —_
1—11 A Ps(X1, Xg, By, Xay ooy Xyt X))
i=
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where for odd indices i, X; can be either x; or x; + 6. Hence

[TAYF
i=1

= k" psl(O’ .) "2
2

m/2
X 1_11 sup " Ps, (%, X9; + 8) 5, (%5; + 8, X2is1)
i=1 x

(2.15) - Pszi(x’ x2i)p§2,»+1(x2i’ X2i41) "2
(where the L2 norm is with respect to x,;, x5, 1)

m/2
< 2,0, ), LT sup [ 421, 5. ) [ Pr ()1
= Y

+ " pgzi(x’ ) ||2"A81p§2i+1(y’ ) "2]’
where §; =s; —s;_;, and there is an obvious modification in our formula for
2i = m.

Combining this with (2.14), and using (2.2) and (2.3) yields (2.9).
Finally, we turn to (2.10). Once again we can compute

E(a(z, H) — a,(z, H))m
-mZ [/ fern) (1) - 1)

X(Y, - X — 2)Py(X) dXdY) ds dt

XPy(Y, + X — 2) dXdY) ds dt

= m!ngl(X)sz(fQT(Y)(f[lAs""Ps)(Y,, +eX - 2) dY) ds dtdx,

where 8 = ¢’ — €. Since F, has compact support we can use (2.14), (2.15), (2.2)
and (2.3) to bound (2.16) by

m/2
k / F(X) TT10%,,7 dX < kle’ — &mb/2.
i=1

This completes the proof of Theorem 1. O

REMARKS. (i) Let B8 be the smallest 8 which works in (2.1) for both p. and
q.. Considerations such as (2.11) and (2.5) lead to the fact that (locally)
a(0, H) < (A,(H))? for any B < B.
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IfX 'and Y have continuous sample paths, and
«(0,R%) > 0,
then [see Adler (1981), page 231], our bound on «(0, H) implies
dim{(s, t)| X, = Y;} > 28,

where dim denotes Hausdorff dimension. Since a(0, H) has positive expectation,
the condition a(0,R ;) > 0 will certainly hold at least with positive probability.
(Proving this occurs with probability one generally requires some form of
ergodicity.)

Complementarily, if X and Y are Holder continuous of order £, then we have
dim{(s, )| X, =Y} <2 — Bd [see Adler (1981), page 230]. Together, these show
that for smooth uniformly elliptic diffusions in d =2 or 3 dimensions
dim{(s, t)| X, = Y,} = 2 — d/2 with positive probability.

In Shieh (1985) this is shown to hold with probability 1.

(ii) If we assume the stronger condition sup||p,(x, ‘)|l < s~@~#, then as in
Rosen (1983) we can show that a(0, H) < c(A,(H))Blog|A,(H)||2~2# for small
squares H.

Let p*(x, ¥) = py, x).

THEOREM 2. Assume that p and p* satisfy the conditions of Theorem 1, and
in addition,
(2.17) sup|| p,( , )|, =M, < o0, foreachp> 0.

s§2p
Then Z, , = X, — X, has a jointly continuous local time away from the diagonal
in [0, T]%

ProoF. The proof is similar to that of Theorem 1. We define
afz, H) = fofe(X,— X,) dsdt,
for H = [a, b] X [¢, d] with ¢ — b = p > 0. We must establish (2.8)-(2.10). We
will show in detail how to obtain (2.11), and the other bounds can be established

similarly.
We have

E(a(z, H))"
=mt S f ([ [Prp s )
XE(Y, — X — 2)Py(X) dXdY) ds dt
- miE RO [ [([Pr0py-o 0+ e5m = 2.3)

XPy(Y, + eX — 2) dY) dsdtdX,

(2.18)
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where
I_)T(Y) =pt2—t1(ylr Yp) e Pt,,,—z,,,_,(ym—lr Im)-
Let ! = =,. Since ¢, — s,, > p we can use (2.17) to obtain the bound

L S/ Pe P+ 50 = 2 )BT, + X = 2) a¥ | ds
HY

< Mpflwf(fl_’T(Y)ps,(O, Y + &2, — 2)Bo(Y, + eX — 2) dY) ds dt

<M [ f([p05+en-2)

(2.19)
x ( [Po(¥)By(3, + eX - 2) d?)) dy, ds dt

<M f.J S‘;?(f Pr(Y)B(Y, + eX - 2) T | s

<M, [ [(supIPr) supiBa ) s,

where dY = dy, dy, - - (fy, -+ dy,, and L? norms preceded by a “sup” are in
the remaining variables. Thus in sup, || Py||,, Py is a function of Y = (y,,..., ¥,)
and the norm is in all variables excluding y,.

We can write

Pr(Y) = PrO(Y)PP(Y),
where
PIY) = pyy- i3 141) = Prpt (It Im)s
PEO(Y) =Dy o(30 %) - * Doty (Yim10 20)
=P o (Y Yi-1) DA (225 1)
1t is obvious that

D _ 1 !
sup|| Prll = sup||P7’f( )||2||P§‘ )”2
b b

m
J( I, w0l 00

l
< | ITsup|pz, ()
=1y Ji—1

The rest of the proof is completed as in Theorem 1. O

3. Tanaka’s formula. From now on we will assume that X is a diffusion
satisfying the stochastic differential equation

(3.1) dX, = o(X,) dW, + r(X,) ds.
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Let
(32) Uz, 5) = [ “e=op,(x, y) ds

be the 1-potential of X. Our goal is to prove the following Tanaka-like formula
- a(0,[a,b] x [¢,d]) = [*U(X,, X,)ds - ["U(X,, X,)ds
a 0

(33) - [o(x) [*VU(X,, X,) dsaW,
—fdbe(Xs,Xt)dsdt,

for the local time of rectangles away from the diagonal. We will use a related
formula, in the next section, to obtain the asymptotics of a(z,[0, T']?) as z — 0.
The terms in (3.3) will be defined in the course of the proof.

To simplify our presentation we will assume that the stochastic differential
equation (3.1) is of the form described in Remark (ii) following Theorem 1, i.e.,
smooth and uniformly elliptic. It will be clear from our proofs that our results
apply to a much larger class of diffusions—it is the lack of concrete examples
outside the class we consider which cautions us against formulating our hypothe-
sis in more general terms.

We start with an easy result.

PROPOSITION 1. In two or three dimensions
(3.4) G(x) = [ *U(x, X,) ds
is continuous.

ProoF. Let
o0
(3.5) Ulx, y) = [ e7*p(x, y) ds.

e

Under the conditions of this section, by (2.4e), for any ¢ > 0, U(x, y) is
uniformly continuous (this is true in any dimension). Hence

(3.6) G(x) = [(Uf=, X,) ds

is also continuous. We will show that (locally),
(3.7) |G(x) — G(x")| < clx — x|

uniformly in rational & > 0. &
The monotone convergence theorem then shows (3.7) holds for G, proving our
proposition. As usual (3.7) will follow from the bound

(3'8) E(Ge(x) - Ge'(x'))m < cml(e’x) - (e"x')lym’
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which we break up into two parts. First with 6§ = x’ — x,

E(AG(x))" = m!f e f{a<sl< <sm<b}'[(i"

s mi(l80 e )" [ f L Rl

< klx — x'|™B,
using the bounds (2.4e) [see (3.16c)].
Similarly,

m

AUS(x, 3)P(Y)| dYds
1

m

B(6(x) = Goa) = mif [ d}m( I [ e p(x %) dt) ds

i=1

<H(f I, )y e) " f - | L

< kle — ¢'|™,

as before. This completes the proof of Proposition 1. O

THEOREM 3. In two and three dimensions Tanaka’s formula (3.3) holds if
¢ > b, with the stochastic integral defined below.

Proor. Set U€(x, y) = [f(x — 2)U(z, y)dz and G%(x) = f,*G(x) =
bU(x, X,) ds. We apply Itd’s formula to the smooth nonanticipating functional
G* on the interval ¢ < t < d to obtain

(39)  G(X,) = G(X) + [a(X)vG(X,) W, + [La1(X) dr,

where

1 9?2 d

L= *) i —.

2 ?j(oo )’axi dx; + %rk ax,,
Using

(-L +1)U(, ) =8(y)(‘),
we have
3.10 _ (% [ (+(x — _ [Yqe
(3.10) j;LG (X,) dt fofe(X, X,) dsdt ch(X,)dt,

so that (3.9) becomes
- ae(o’ [a) b] X [C, d]) .
3.11 d d
G ge(x,) - 6(X) - [‘o(X)vE(X,) W, ~ [*G(X,) dt.
. c c
*  Using Theorem 2 and Proposition 1, we take the ¢ — 0 limit in (3.11) to find
- a(o) [a’ b] X [C, d])

(312) _ G(X,) - G(X,) - tim fdo( X,)vG(X,) dW, - fdG(Xt) dt,
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and we will now show that
. [d
(3.13) lim f o( X,)VG(X,) dW,
[:2d c
exists and is giveri by a stochastic integral, completing the proof of Theorem 3.
For this it suffices to show that the integrals in (3.13) form a Cauchy sequence in
L? of the underlying probability space. With U=¢ = U¢ — U¥, we have -
d , 2
E( [o(X)(v6(X,) - v64(X,) aW,)

- '/cd[E.(Ia(Xt)(VGE(Xt) - VGS,(Xt))lz) dt

(3.14) =2f[

a<s;

S [¢o1v0= 4w ), 000" 45, )
<sp< v
Xpsl(o’ yl)psz—sl(yl) yZ)pt—sz( Yo x) deX) det

= kflval(x’ yl)”VUa's,(x’ yz)lU(O» y)U(n, 3;) dxdy,
using (2.17), which we write as
(315) [0 WUGr )| [I90 4w 21T (3, 2) | .

It follows from (2.4a)—(2.4f), by scaling out |x — y| in the region 0 <t <1,
that

M'lg(|x_y|)|’ d=2) |x_y|<%’
3.16 U(x,y) < 1
(3.163)  Ul,y) _ aas
lx =y
aU(x, y) 1
3.16b < ’
( ) l axj |x _yld—l
3.16c) |U(x + h Ul M h|® ! + !
( . C) I (x )y)_ (x’ y)lS I I |x_y|d—2+8 |x+h_y|d—-2+8 ’
d d
:?—x—jU(x +h,y) - oz, U(x, y)
(3.16d)

sl 1 1
= Mlhl Ix — yld—1+8 + Ix + h - yld—-1+8 ’

while U(x, y) and vU(x, y) fall off exponentially in |x — y], as follows easily by
arguing separately for ¢ < |x — y| and ¢ > |x — y|. These estimates allow the
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integral in (3.15) to be bounded, with y = ¢ — ¢, by
[1(@)1(z) [U0, 50, %) {1859 UG, 2 I8E UG, )| dyda

1
(817) < Mvssgpr(O, WU(r1, 3) PO dy, dy,

B2}
< M(e - e’)ssupro(y); dy <M(e —¢)°
5 |y _ zld—2+26 ’

where U? is the Brownian 1-potential. O

4. Renormalization and asymptotics of the intersection local time. In
this section we continue with the assumptions of Section 3: X is a smooth,
uniformly elliptic diffusion and we shall see that our results require d = 2, as is
known to be the case for Brownian motion. ‘

- Let UX(x, y) = U%(x — 2, y) and apply It0’s formula to the nonanticipating
functional of ¢ and x,

(4.1) [Us(x, X,) ds,
0
on the interval 0 < ¢ < T. We obtain
[[Us(Xp, X,)ds =0+ ["UHX,, X,)dt
0 0
(42) + [o(X,) ['VUL(X,, X,) dsaW,
0 0
T rt
+ [ [wus(x,, X,) dsdt.
[ frusx, x,)
As in Section 3 this leads to
a2, Dp) - ["UA(X,, X,) dt
0

T e T t .
(4.3) = - [[U(Xp, X,) ds + [(o(X,) [VUX(X,, X,) dsdW,

+/DT/U;(X,, X,) dsdt,

where Dy = {(s,t)|0 <s<t< T}

We will show that as ¢ — 0, the right-hand side of (4.3) converges to a random
variable jointly continuous in z, T. However, if z # 0, the path continuity of X
assures us thatin Dy | X, — X, — 2|2 &éoff Dy ,= {(s, )0 <s<t—p,t<T}
for some p small. Thus the limit ’

o(z, Dy) = lim jDij,(X, — X, - z)dsdt

e—0

e—>0

lim fD [t(X,- X, - 2)dsdt = a(2, Dp,,)
T,p
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exists and is jointly continuous in T, z # 0. Since the same is true, using (3.16),
for

[[u(x,, X,) dt = lim I "UAX, X,)dt, z+#0,
0 e—>0Y0

a jointly continuous limit for the right-hand side of (4.3) will show that
r 4
a(z’ DT) - f Uz(Xt’ Xt)’
0

continuous for z # 0 has a continuous extension for all z. Thus the singular part
of a(z,[0, T]?) = 2a(z, Dy) as z — 0 is given by 2/TU(X,, X,) dt.

It remains to show that the three terms in (4.3) have ¢ — 0 limits which are
jointly continuous in z, T. We will consider only the stochastic integral term—the
others being similar, and simpler.

As in the proof of Theorem 1, it will suffice to show that

’ . 2m
[ ["o(X) ['VUAX, X) dsaW,~ [" [VUS(X,, X,) dsdW,)
(4,4) 0 0 o Yo
<k |(T,e,2) — (T, ¢, 2')|[™,

for all m and some 8 > 0. Again as in the proof of that theorem it will suffice to
consider separately the variation in T, ¢, z.
We begin with bounding

€[ [To(x,) [T UL, X,) dsaw;) "

< k([ [ [(o(X)VUHX,, X,), o( X)VUX,, X,)) drdsdt)

(4.5) skfffriSSistilE(.=1|VU;(X,i,Xri) |vU;(Xti,Xsi)|) drdsdt

12

= k'/; <...< (-/iflllv@e(x"i’ x,-,i)”VI];(x,”i, x'ii,-)lpf'(X) dx) dt

iﬂm
=< k/ l:[l |Vl]ze(x1r,’ xi‘-) HVU;T(/x,,‘,, xﬁi) |U(0’ xl) e U(x3m—l’ x3m) dx,

where 7, 7, 7 are three complementary injections of {1,..., m} into {1,2,...,3m}
such that for each i, 7, < #; < m,. This follows from r; < s; < t;.
As in (3.17) this is bounded by

m .
(4.6) Sg‘:?f#I-'[llvljzi,l(xﬂiy xﬁi)llvljzi‘z x"i’ x;,i)l
: X U(O"xl) t U(xgm_l, x3m) dX.

We can bound (4.6) by integrating successively starting from x,,,. We encoun-
ter three types of integrals.
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Cask I (i € range 7).

/lan(xis xj) HVUb(xh xk) |U(xi—1’ xi) dx;

3/2 3/2 23
=M f'an(xi’xj)l |VU,(x;, 24) | dxi)

1
|x; + @ — x, — B>’

where the first inequality comes from Holder’s inequality and the second from
(3.16).

In the above integral we necessarily have j, k < i. It is possible that j or &
equals i — 1. Then d = 2 is crucial. Note that i = 3m is of this type.

Cask II (i € range 7).
1

fmU(xi—l’ xi) dxi <M,
J i

by (3.16).
CasE III (i € range 7).
/U(xi_l, x,) dx, = 1.

Note that i = 1 is of this type. Also note that we have actually bounded the
integral in (4.6) independent of the 2, ;’s. This completes the proof that (4.5) is
bounded.

Returning to (4.4), we see that given the bounds (3.16), the proof of Theorem 3
and the above method of bounding (4.5), there will be no problem in handling the
variation in z and &. We now discuss the variation in T.

Let V=(0<r,<s;<t; T<t;<T'}). In the third line of (4.5) we use
Holder’s inequality in the time variables drds dt,

1/y
(4.7) f Pr(X)drdsdt < |V|1‘1/7( / P%(X)) ,
\ %4 . <o <lgy
and we take y > 1, but close to 1. Using (2.4a) we see that

e arlx—y*/t

pl(x,y) <M

b

t'Y
which leads as before to

. ,
Nx, y)dt < M———=
fo pi(x, y) &= D

and exponential falloff in |x — y| large. With y close to 1, we can bound the
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integrals as before, and are left with the bound
M|V*-VY < M|T’ — T|™.
This completes the proof of (4.4).
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