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We establish a Tanaka-like formula relating the local times of r and r+1 fold self-intersections
of a Brownian path in the plane.
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1. Introduction

It is well known that, for any r, planar Brownian motion W, has r-multiple points,
i.e. points xeR? with x= W,=W,=--- =W, for distinct t,,..., t,. (Dvoretzky,
Erdos and Kakutani, 1954). As a purely formal measure of such r-fold intersections
we study

I';'Ja(ﬂa,—m)---a(%—m.)drn---dfr g

In a previous paper (Rosen, 1984) we showed how to interpret (1.1) as the local
time of the random field

Xr(tls“‘slr) S ( mz_ Wx

vy W = W) (1.2)

Recall that X : R’ - R*""" induces a measure ug(-) on RV, the occupation
measure of X on B< R" defined by

us(A)=A,(X"'(A)n B) (1.3)

where A, denote Lesbesgue measure on R”. If pp <« Ay, we say that X has a local
time «a, relative to B, defined by

dpug (

B =
a,(x, B) TR

x). (1.4)
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By definition we have

J.“z(’_l)f(x)a’r(x; B) dA (x)zu—n

=J "’Jf(mz—“ﬂl,"',m,—W,,,)dt:,“'dr, (1.5)
B

for all bounded Borel functions on R*'" " If we formally take f to be the ‘5-function’,
we find that «,(0, B) should give (1.1).

In (Rosen, 1984) we showed that if B is a product of disjoint intervals, B=
X -, [a; b;], X has alocal time relative to B, and if we write a,(x, a,, by, . .., a,, b,) =
(x, B) then e, can be taken to be a jointly continuous function of its arguments
(x, @y, by, ..., a, b,). We will sometimes write I; = [a;, b;] and will always assume that

a;<b<ay<b,<::-<a,4,<b.,. (1.6)

Properties of a measure analogous to (1.1) for r-fold intersections of independent
planar Brownian motions have been established in (German, Horowitz and Rosen,
1984) and applied by Le Gall to study intersections of Wiener Sausages (1985) and
derive important information on the Hausdorff measure of r-multiple points.

The goal of this paper is to present an explicit formula for a,,, in terms of a,
analogous to Tanaka’s formula for the local time of one dimensional Brownian
motion, and to our own formula for double points (Rosen, 1985). Our formula for
double points has been analyzed and extended in (Yor, 1985), and applied in (Rosen,
1986) and (Yor, 1985) to study the asymptotics of a,.

To describe our formula, let

g(x)=e"e X2 2my (1.7)
be the transition density for killed planar Brownian motion, and set
K(x)=-[ q.(x) dt (1.8)
L]

It will be seen that a,(x, a,, by, ..., a, s) is a continuous increasing function of s,
and since K is positive and measurable the integral

K,(x)=J' K(x—W,)a(0,a,b,,...,a,ds) (1.9)
1,

is well defined, although a priori it may be infinite. We will show below that K, is,
in fact, continuously differentiable, and we can state Tanaka’s formula for a,.:

Theorem 1. With probability one,
_ar+](0‘ Ayyeovy rigy br+l) = Kr( Wb,.ﬂ) = Kr( Wa,_H)

)

-
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Remark 1. What makes this work is the identity

A
~24+1)*K =4
( 5 )*K

2. It is easy to modify (1.10) to obtain a formula for a,.(x, *).
3. «,(0,a,,...,a,ds) induces a measure », supported on the r-multiple points
in R?, via the formula

J‘ 8(x)dV(x)=J g(W))ea.(0, ay, ..., a,ds).
R?

K., is just the 1-potential of ».

If we abolish condition (1.6) and take all I; equal, the resulting local time a,(x)
will be discontinuous at x =0.

As alluded to above, Rosen (1986) and Yor (1985) apply Tanaka’s formula for
@, to determine the nature of the singularity of a,(x) at x=0, a problem also
discussed in Varadhan (1969), Dynkin (1985) and Le Gall (1985). The formula of
this paper has recently been applied by M. Yor (1985c) to analyze the singularity
of ai(x) as x> 0.

An important pedagogical contribution of this paper is a new and greatly simplified
proof of the joint continuity of «, There already exist a series of proofs for the
joint continuity of loal times of random fields (Pitt, 1978, Geman and Horowitz,
1980; and Geman, Horwitz and Rosen, 1984). These proofs are long, making them
difficult to follow and unfortunately allowing errors to creep in. Our proof, stated
for @, but easily extendable to other random fields, has the virtue of simplicity. It
also yields stronger results. The weak convergence used in (3.8), a key step in our
proof of Theorem 1, seems unobtainable with previous proofs. Our new proof owes
much to a conversation with J. Cuzick.

1 would also like to thank Joseph Horowitz for many helpful remarks.

2. Joint continuity of the local time a,

Forany e=(g,,...,&-1)€(0,1]", x=(%,..., %) eR*,
eEe E-yﬁ{(als bh sety an br)lai+] - bi = ‘Y9 br‘<‘ 1};

let us define
a;(x, e)= J- it J (X~ W+ W) - g2~
L

= W, )di - -<idt, (2.1)

I

Lemma 1. For any m even, a <1/2(r—1), we have
E((af(x, e)—at(x', &)™) < enalle, x, e)—(&', x', &)™ (2.2)

foralle, e'€(0,11, ¢, e'€ E,, x, x'e R*"™V,
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Using (2.2), the multiparameter version of Kolmogorov’s lemma (Meyer, 1979/80)
shows that, for @ <1/2(r—1),
las(x, ) —a; (x', e)|<c,|(e, x, &) = (&', x', &)|% (23)

first for all rational e, '€ (0,1]""", ¢, '€ E,, x, x' in a bounded set (say {y||y| < n}),
but then for all ¢, £, e, €', x, x" in the above sets, since, by (2.1), ai(x, e) is clearly
a continuous function of its arguments.

Now take x'=x, e’=e in (2.3) to conclude the existence of the limit

a,(x, e)= ling a.(x, e). (2.4)

Again by (2.3) the convergence is locally uniform:
lai(x, e) - a(x, e)|<c,|e|* (2.5)
and the limit is continuous
e, (x, e) — e, (x', €)| < cm|(x, e)—x', e’)|"’. (2.6)
We now identify this @, with local time: Let f(x) be a continuous function of

compact support on R*" ™",

Jf(x)ar(x, e) dAsy,—1y(x) = lim J‘f(x)af(x, e) dAz—1)(x) (2.7)

by the local uniform convergence (2.5), while from (2.1)

lsi_l:% Jf(x)a"(x, e) dAy,—1y(x)

e=0

=1imj I SR AWL =W, v WE =W, - 1dss ey,
I, I

:J. "'J‘f(mz_“/ll!...s“/l,_‘vfdl)dtl"'drf (2'8)
I, '

since f * g, - f uniformly. Together with (2.7) this establishes the jointly continuous
a,(x, e) as the local time (1.4) for B= X.;; [a;, b;].
Lemma 1 is proven in Section 4.

3. Tanaka’s Formula for z,,,
Set

K‘(x)=qu,(x) dt. (300

£

K* is a positive C™ function, which decreases exponentially as |x|- 0. We have

K*(x)1 K(x) forallx,ase]0. (3.2)
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In analogy with (1.9) let

Kf(x)=J' K°(x—W,)a,(0,a,,...,a,ds). (3.3)

I

In Section 4 we will show

Lemma 2. For all m even and a <1

E((K:(x)— K (x))™)< cnl(e, x)— (&', x")|*™ (3.4)

As in Section 2 this implies the existence and continuity of the limit
lim,.q K7(x) —but by (3.2) and the monotone convergence theorem this limit is
K,(x) of (1.9).

We need yet another lemma.

Lemma 3. For all m even, a <1,
E((VK:(x) VK (X))™) < enl(x, €)= (x', £")]*™ (3.5)

E((K7(») - K (x)—(y—x) - VK(x))™) < el = y|*™"2, (3.6)

As before, (3.5) shows the existence and continuity of the limit lim.., VK :(x),
while with (3.6) after first taking the £ >0 limit (uniform integrability) then a la
Kolmogorov we can identity lim, ., VK,(x) with V(K,(x)). This establishes

Proposition 4. K, (x) is a continuously differentiable function of x, with probability one.
Now apply Itd’s formula to the C™ function of x, K;(x).

r+1

=—Jz,“(—§+l)Kﬁ(\M)dt

=_I '[ qe(“fr- Ws)ar(os ay,...,0, dS) (3-7)
L1,

K (W, )—Kﬁ(Wa,+,)—J‘ VKf(W,)'dW.—J. K:(W,)dt
Ly

Iriy

since (—4/2+1)K*(x) = q.(x).
Because of (2.5) and (2.6) we have weak convergence of the measures

alsr4-2(0, ay, ..., a,ds)> (0, a, ..., a,ds)
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on I. Hence

.[ J‘ q.(W,— W.)e,(0, ay, ..., a,ds)=
Ly V1,

= lim J. J- qe(“/r_ WS)QE'EJWI‘E'_I)(O9GH'"s ar, dS)
Ly 1,

(E1rensro1) >0

:(el...!.lr.r,l}l)-.o II, i J".—H qsl( Wl‘;_ “/l;) by

o gy AW, — W Da AW =W, )dH - bidily

by (2.1).
(3.8) and (2.4) now show

e—=0

lim J. j q.(W.— W,)a,(0, ay,...,a,ds)
Iy d 1,

=a,41(0,ay,...,a, b, a,14, bryy).

(3.8)

(39)

Since the earlier considerations of this section show that K ;(x) - K,(x) uniformly
on compacts, taking the limit £ > 0 in (3.7), together with the following lemma will

complete the proof of Theorem 1.

Lemma 5. For some subsequence €, -0,

J VK:’"(W,)-dW,—»J- VK,(W,)-dW, a.s.
Irtl

Irsy

4. Estimates

Proof of Lemma 1. We have
E((ar(x, e)—a;(x,e))™)
< cE(af(x, e)— o (x, e))™
+E(af(x', e)—aj(x, e))" +E(a; (x',e) —ar (x', €)™

We will bound each of these three terms separately. By (2.1),

r=1 o
a(x, e)=f j [T €5 Wont W) e=51BP+12 gp g
Iix---xI, 4 R

Ar=1) joy
so that
E((oi(x €)—ari(x,e))™
=J‘ ﬁ (e —g?'x) e Lisi(pjP+1)e, 2
RETH® 1

b'Y l- |E(e7i£|7’:1zj:{p1,"(“/:;+17w;;)) dt dp.

(3.10)

(4.3)
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Of course
E(e~ TR Zim 1o Wi~ Wh’) = e VER TP W= Wh) 1 (4.4)
Let #',..., =" be r not necessarily distinct permutations of {1,..., m} and let
A(w', ..., ¢2)=[{le(fx - - - X L)"|57' D= a7/ *0] (4.5)
where we define ¢7'"*V=71'"_ On A(#',..., #"), using the fact that Brownian
motion has independent increments we have
m r—1 . r m 2=
V(E 2 piWe ~ er-)) =¥ T luf’t (4.6)
1=1j=1 j=11=1
where
uj= % p7 O+ ¥ p7{Y (po=0), (4.7)
k=1 k=1
z_j. - r}’”'*”— r}”“’. (4.8)

We now integrate out the t“; in (4.3), over A(#',..., #"), and use the bounds

1 1
J e dr<c(1+v)7, J. e dr<c(1+v)? (for !-J'-"By)

0 .
to obtain

J. e LI P2 gr< e [T Al(p) (4.9)
A(m ") i

yeeey Jj=1

where
A= 1T A+l (uf=up)
Using the generalized Holder’s inequality we have

J 1T A(p) dp=J- I (H A}""(p)) dp

RICIm joq RHUm iy \jsti

r 1/r
< ] (I I A;f'—‘(p)) <0 (4.10)
i=1 R

2(r—1)m j#i
since, by (4.7), for each i,
{ulo<i=<m,j#i}

form a linear set of coordinates for R V™,
Returning to (4.3), we use

le”*—e”¥|< e(|p]x—x])* fora<1 (4.11)
and find
E(ar(x, e)—a;(x', e))”

=elx—x|"™ ¥ j (lﬁ. Ip‘l“) 11 A(p) dp. (412)

L R
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Since for any i
lp'|<c T |pi—pll<c IT 1 +|p}—pj-i))
=i j#i
<c [] (1 +]ufP-u? O, (4.13)
Jj#i
the latter by (4.7) where #/ = (=’)"", we have

fllpl=c i

i=1

(ﬁ 1 (1+|u,’—|2))m. (4.14)

I=1 j#i

Now (4.12) is bounded as was (4.10), if 2r/(r—1) —2a >2,i.e.if a <1/(r—1). The
second expectation in (4.1) is bounded similarly using

|eIPFe — 1Pl < ¢ p'[Pe | — &'] (4.15)

instead of (4.11), if @ <1/(2(r—1)).
Finally, to control the third term in (4.1), let I} x --- X I, correspond to e,
Iix ---xTI.to e, and let S denote the symmetric difference of these two sets. In

the analogue of (4.3) we must integrate over S™. Recall (4.9):

,,,,,

.....

r

<c|S|™? [1 AY¥(p) (4.16)

ji=1
for any g, ¢’ with 1/g+1/q"=1. As before this is integrable in p if

2r 1 o=t il 1 r=1
g0 e = emhie = el e
r=il q r q q i A

Thus the third term in (4.1) is bounded by |e —e’|™ if @ <1/r. This completes the
proof of Lemma 1.

Proof of Lemma 2. In light of (2.5) and (2.6), a(0, a,, ..., a,,ds) converges to
a,(0, a,,...,a, ds) as measures on I,, hence

K8 (x) = ‘[ K*(x—W,)a’(0, a,,..., a,,ds) (4.17)
I,

converges to K;(x) as >0 for almost all paths. In fact this convergence takes
place in all L™ by uniform integrability: K°® is bounded, and by (2.2) the
a’(0, a,, ..., a, b,) are uniformly bounded in any L” norm. Hence it suffices to show

E(K3°(x)— K7 %(x))" < el(e, x) - (&', X)|*" (4.18)

with » indenendent of §
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By definition

Kﬁ'ﬁ(x)=j.’ K*(x-W,) J.I J.I ‘Ia(“/:z‘"Vu)'"qs(“/:,_l_“c)dfl---dfrds-

(4.19)
Since
-[ femetpP+n)
Ke g —ip-x
(x) € ( |p|2+1 )df\z(P),
we can write this as
K:%(x) =I I H(p, x)(|p.+1)™"
ILixxI, JR?"
x e'Zi=1 Wy =W rie W, qp d¢ (4.20)
where
H(p,x)= e iPx e—e(lp,\zﬂ) e™8 b2 (lp‘}lﬂ)_
Using the change of variables g,= p,, q;=p,; + p, we have
m
E(K;®(x))™ = J _[ o ( I1 H(p', x)(|qo* + 1)")
(Iyx--xI)™ J R? 1=1
X [E(eizfr:"’zﬂlqj'( Wy~ ™)) dt dp
where t,=0. As before, on A(#',..., 7")
E(e'Ti b G Wy~ W) = e Lim IrgtlePel/2 (4.22)

where now
Tl i (k) wl(k)
;=Y gy "+ X ali.
k=1 k=1

Integrating overdf, on A(w', ..., m") and using |H(p, x)| < 1, we find (4.21) bounded
by

I f __Bi(@)... BXq)dg (423)
W s L R
where
B%(q)=lﬂo(lq3|2+l)“', Bf-(q)=rH (lojP+1)" (o] =vs1)
= =0
as before.
[ 1B aa=[ 11 (11 5) aa
R2™ j=0 i=0 \j#i
r 1/r+1
=< 1-[ (J‘ H B?(r+l)frdQ) < 00, (4'24)
i=0 R jei

As in the proof of Lemma 1 these ideas suffice to prove Lemma 2.
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Proof of Lemma 3. This is similar to the proof of Lemma 2, but here we use

<c(lp.llx-y)*"*
and instead of (4.24) we need to bound

e —glt* —ipe{x—~y) 7"

J s'*(9) 1 Bj(q)dq
RA™ j=t

r r 1/2r
ZJ [H (H Bj(q)) }(B1 o Br)z—{r—l),v'lr dq
RAMEL te1 Nl

i
S(H H B}ﬂr )"(Bl i3 Br)zi(ril)mr”(4r+1)/(3r+|) (4-25)
i=1llj=0 4r+1
J*i
since
r 371 i
4r+1 4r+1
while
r 4r+1 r
1'[ le_,"Zr =J' H Bf+1/2r dq<m
j=0 4r+1 J=0
j#Ei J#Ei
and

||(B, i Br)2—(r—l)/2r"(4r+1)/(3.—+n ol

((3r+1)/2r)-(4r+1)/(3r+1))
(4r+1)/(3r+1) — (B,:::B) ik dg

=,[ (B, B,)*"/* dg<oo.
This completes the proof of (3.6), and (3.5) is similar.

Proof of Lemma 5. It suffices to show L* convergence in (3.10), and for this it
suffices to show

J E(VK (W) - VK (W,)]) dt~>0. (4.26)
Iy
Since VK °(W,)> VK,(W,) for a.e. path and fixed ¢, it suffices to show VK (W)

Cauchy in L*(dP x dt).
As in the proof of Lemma 3, we find

j E([VK;(W,) - VK (W,)") dr

1/4|p3|1/4 ;

I Tl e
5c|s—8’|'/6J lp: - pil|p:

—yr. Ez_ 112 =1
e dmEem|Z0 T
R"(1+|P.‘—|Z)(1+ E-[A{rr' ) | J| 2

’) =

<le—eV® j _Di(p)- - DAp)Q*(p) dp (427)
Y

pi
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where
Q(p)=0+pI)'+p)",  Di(p)=Q+|Zi)'a+]|Z])(a+|Z])™
and

e Ik I (k)
Zj=3Y pj P+ pr}'-‘l :
k>

k=I
Write

L3 r 3/4r
J. H D}Q:Mdp:j [H (l‘[ DJQ) ](Dl o . Dr)(sr+3)/4rdp
Jj=1 i=1 \j=i

(190)"

J#Ei

= ”(Dl Vi Dr)(srﬂ)ﬂr"(sr+3)/5r+3)<°Oa

(8r+3)/3

r
i=1

as before since

3F . SFE3
v =1
8r+3 8r+3
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