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ABSTRACT ¢

We study the asymptotic behavior of sums S, of random variables
defined for certain mean-field type ferromagnetic systems on a circle. The
probability distribution of S, may be expressed in terms of a certain
measure on a space # of continuous functions. Suitably scaled and cen-
tered versions of this measure have limits, in terms of which the asymptotic
behavior of S, is determined. These function space limits depend crucially
upon the minimum points of a nonlinear functional on # related to the
specific free energy of the ferromagnetic system. The study of these limits
is related to work by M. Donsker, S. Varadhan, and other authors. The
proofs of the function space limit results are lengthy and will appear else-
where.
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1. INTRODUCTION

For each n€{l1,2,...} we define a mean-field-type ferromagnetic
system on the sites {*’%, =, e ,n} of a circle of circumference one.
Let {X].("); j=1,...,n} denote the random variables which measure the

strengths of the magnetic moments at the sites { {I—} The joint distribution

of the {XI.(")} — i.e., the Gibbs measure of the system — is defined to be

ar (X, . -, X,)=

e 1 i1

(1.1) =7 3, W%HJ[” XX, +
n - n

+i=21' H[jn—]X}.]j[{ dp(X,),
where

_ 1 i

Zn !';EXP [2’1 1<j<l<n [” ]XfX[+

(1.2) R

- j;ZI' H(L) X].]]_ 1T dp(x)).

We have set f:= kl_T equal to one (k is Boltzmann’s constant, T the

absolute temperature). Among all Gibbs measures on the sites {*’%} with

isotropic pair interaction potentials J satistying out hypotheses, dI', is
essentially the only one which exhibits interesting limiting behavior. This
is explained in Remark 4.2.

Let # denote the space of all real-valued continuous functionson R
which are periodic of period one. The function J(#) in (1.1)(1.2) is an
even, positive, suitably smooth element of # which also satisfies the tech-
nical hypotheses listed at the start of Section 3. The most important of
these is that J be positive definite (i.e., each Fourier coefficient positive).
We normalize J so that

1
(1.3) [ Jtyde=1.
0
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The function H in (1.1) is a suitably smooth element of # (see Section 3)
while p is a Borel probability measure on R which is not a point mass
and which satisfies

(1.4) [ exp (ex?) dp(x) < = forall ¢> 0.
R

Thus, the integral defining the partition function Z  in (1.2) converges.
Because J is positive, (1.1)«(1.2) define a ferromagnetic system on the sites

{f{; di=ll s n}: the interaction strength between sites ﬁ and ;i- is

o el - il st oo
n=r [n n]’ an external magnetic field of strength H (n] is applied

at each site }E; p is the distribution of a single spin in the absence of

interactions with the other spins. Because of the factor % multiplying

J[%— ;i—], (1.1)1.2) define a mean-field-type model. The case J= 1.

H = h, a constant, is the Curie — Weiss model (Brout [3], Kac [13]
§3). The function J in (1.1) makes the present model highly nontrivial in
comparison with the Curie — Weiss case, where each spin interacts equally
with all the other spins. From a probabilistic viewpoint, the spin random
variables in the Curie — Weiss model are, for each n, exchangeable (viz.,
for /=1, H= h, the measure dI', in (1.1) is invariant under permuta-
tions of the X f ’s) and thus identically distributed. This is not true for the
present model.

The purpose of this paper is to discuss the asymptotics, as n - o, of
suitably normalized sums of the random variables {Xi.‘")}. To simplify the
statements and proofs of certain results, we shall assume in some cases that
H is a constant function (see discussion after the statement of Theorem
2.2). See Section 2 for the statement of the results. Similar asymptotics
have already been treated in great detail in the Curie — Weiss case
(Ellis — Newman [6],[8], Ellis — Newman — Rosen [9]).
The probabilistic limit theorems of Section 2 are proved as a consequence
of new limit theorems for certain measures on the function space #. In
Section 3, the necessary functional analysis is developed. Section 4 contains
statements of the function space limit theorems. In Section 5 the theorems
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of Section 2 are proved. Proofs of the theorems of Section 4 are lengthy
and will appear elsewhere (Ellis — Rosen [10]).

We point out the relationship of our results to other results in the liter-
ature. The proof of Theorem 2.1 is an instance of Laplace’s method in func-
tion space. Analogous problems have been studied by a number of authors
(Donsker — Varadhan [5], Pincus [l4], Schilder [I15],
Simon [16], Varadhan [18]). Our theorem is not covered by any of
these papers and must be proved from scratch. Theorems 2.3-2.5 are proved
by relating the distribution of S, to a probability measure on # and de-
riving the limits of suitably scaled and centered versions of this measure (see
Theorems 4.5-4.7). The limit result which yields the case a= 1 of Theo-
rem 2.3 is contained in Varadhan [18] but the limit results which yield
Theorems 2.4-2.5 as well as the cases a> 2 of Theorem 2.3 are new.

The limit theorems in function space depend upon the minimum
points of a nonlinear functional on %. In Schilder [15] there are re-
lated results. In a slightly different context, he proves, in the case of a
unique minimum point which is non-degenerate, an asymptotic expansion
for an integral analogous to (4.10). In Theorem 4.8, we give the first term
of the asymptotic expansion of the integral (4.10); this is derived from a
result which arises in the proof of Theorems 4.5-4.7. Theorem 4.8 is stated
for a unique minimum point which is either non-degenerate or degenerate
and constant (see Definition 3.1 for these terms). The entire asymptotic
expansion of the integral (4.10) should be obtainable by our methods with
extra work.

In this paper, we treat the case of degenerate minimum points only
under the restrictive hypothesis that H is a constant function. This guaran-
tees that any degenerate minimum points are constant functions and simpli-
fies the statements and proofs of certain theorems. Degenerate minimum
points in the case of general H will be treated in E1lis — Rosen [10].

Acknowledgement. We thank Melvin Beiger, Donald Geman,
and especially Srinivasa Varadhan for many useful discussions. We
thank Barry Simon for sending us results from his book (Simon [16])
prior to publication.
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2. STATEMENT OF RESULTS

For this section, the functions J and H are assumed to satisfy the
hypotheses listed at the start of Section 3. (H is not assumed to be a con-

n
stant function unless otherwise specified.) Define S, := 2 Xj‘"). The

j=1
S — Mg

limiting behavior as n— = of —n"— and of "1_ = - for suitable constants

n
¢ and y> 0 is precisely determined. Although the Curie — Weiss model
is not covered by our methods (/= 1 is not positive definite), our results
are analogous to those obtained in the Curie — Weiss case and also include

n 3
new phenomena. For We #, define S, = ]__Zl’ W[j’;] XI.('”. In The-

orem 4.9, we discuss the asymptotics of the random field {Sn W We %},

We define the various notions of convergence which arise (Chung
[4] § 4.4). Given probability measures {£, ; n=1,2,...} and a measure
¢ on R, we say that the £ tend weakly to £, and write £, =, if

[ ydg, ~ [ ydt forall y€ C(R); we say that the £, tend vaguely to

g, and write £ > ¢, if [ydg~ [ ydg forall Yy € C(R) which vanish
at +eoo. Given random variables {7, ; n= 1,2, ...} with probability
distributions {£, ; n= 1,2,...}, we saythat the 7, tendin distribution

(respectively, vaguely) to &, and write T, “, £ (respectively, T, = §),
if the £, tend weakly (respectively, vaguely) to & If T, 2, £, then &
must be a probability measure; if 7, 2L ¢, then § may be defective:
g=bt, some be[0,1], ¢ a probability measure on R. We denote a
point massat ¢ by &.. If §£=6,, wewrite T, Z e

Theorem 2.3 states that under suitable hypotheses there exist an in-
teger 0= 1, positive numbers {bj.; jF=1, . 55 5 0 wyith Zb].= 1, and

distinct real numbers {)7j; j=1,...,0} so that
S 0

9 _h 2, b.6-.

& n ,-;Z; I%
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If 0=1, then this is the law of large numbers for {Xl.(")}: —n"—£+ Y-

Physically, 6 = 1 means that in the thermodynamic limit n - «, the
ferromagnet has a unique phase with magnetization per site ;1 (see
(Ellis — Newman [6],[8], Ellis — Newman — Rosen [9] for
more physics). If 6 = 2, then (2.1) corresponds to the existence of mul-
tiple phases, where b]. is the probability of the system being in the j-th
phase and ¥; is the magnetization per site in the j-th phase.

S _
Theorems 2.4-2.5 analyze the fluctuations of _ni about each .

Under suitable hypotheses, for each j€{1,...,0} there exist an integer
k]. = 1, a positive real number 7\]., and a probability measure £, so
!

that

S —ny,
(3.2) 71 Heeekkedube
I*F e |

n I

The measure £, , is Gaussian if and only if k=1, sothat y=k=1 is
the central limit theorem for {XI.(")}. The case 6 = 1, k> 2 corresponds

to a phase transition. If 8 = 1, then > in (2.2) is replaced by Z>. The
Gaussian case of (2.2) is treated in Theorem 2.4. The non-Gaussian case is
treated in Theorem 2.5 under the assumption that H in (1.1)<(1.2) is a
constant function. To avoid notational and other complications which
arise in the general case, Theorems 2.4-2.5 state (2.2) under a special as-
sumption (which implies 6 = 1). More general statements appear in Sec-
tion 5.

Our first result concerns the specific free energy f for the system
(1.1)-(1.2), defined by

23)  fi=—lim ~1InZ,.

H—> o0

Fact (2.7) will be proved in Section 5 in the special case that H is a
constant function

Theorem 2.1. Define the operator # on L*[0,1] by
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1
(2.4) (fY)(z):=0fJ(r—s)Y(s)ds, Y e Lo, 1)

Then J# has a square root V# which is invertible and whose range is a

L
subset of %. Write ¥ % for (V) '. Define the function ¢ on R
by

(2.5) @@ :=In Rf exp (’x) dp(x), yER,

and the functional G on % by
1

o 1 2
S-S+ W i Yeas ),

(2.6) G(Y):= 1
+ oo if Ye®\a(sg ?),
where ||—||2 denotes the Lz[O, 1] norm. Then inf G over ¥ is finite,
1

it is attained at some point Y* of 2(f %), and

@n  f=- lim % InZ, = min G = G(Y™).

The asymptotics of S, depend crucially upon the minimum points
of G; these are points Y*e€ % for which G(Y*)= min G over #.
(The physical meaning of other critical points of G is explored and cor-
responding limit theorems are proved in the Curie — Weiss case in E1lis —
Newman — Rosen [9]). In Theorems 2.3-2.5, a key hypothesis is that
these minimum points are finite in number. The next theorem locates all
the minimum points and states that they are finite in number in the impor-
tant special case that H is a constant function. Fixing # real, we define

2
28) G, ,0=5-e0+h, yeR

This function plays the same role for the Curie — Weiss model as G in
(2.6) plays for the present model. Because of (1.3), if H in (2.6) equals
h, a constant, and Y = y, a constant, then G(Y) = G, . O).

Theorem 2.2. G, (v) has finitely many minimum points, say
Yiseo., ¥, some a= 1. If H in (2.5) equals the constant h in (2.8),
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then the minimum points of G are precisely the constant functions
Y;‘:=yi‘,...,Y;:=y;‘ and
(2.9) min G = Ir}gn SN

¥

Conversely, if G has a minimum point which is a constant function,
then H is constant. Given a€{1,2,...} and any points ;1 e ,;u in
R, the measure p in (2.5) may be chosen so that (1.4) holds and G_
has precisely ;1 Tk ,;a as minimum points. Furthermore, the types of
these minimum points may be arbitrarily prescribed (see Definition 3.2
for the term type).

We now turn to the statements of the limit results (2.1)-(2.2). The
forms of the limits depend upon the non-degeneracy or degeneracy of the
minimum points and upon the numbers {ki} and {)\j}, called the types
and strengths, respectively, of the minimum points. These terms are defined
in Definitions 3.1-3.2. Let Y* be a minimum point. For now, it suffices to
say that if Y* is non<degenerate, then the type k of Y* equalsone; if
Y* is degenerate and isolated, then the type k of Y*, which measures
the extent of the degeneracy, is an integer exceeding one.

Limit theorems for degenerate minimum points are stated only in the
case that H in (1.1), (1.2), (2.6) is a constant function or, equivalently,
that the minimum points are all constant functions. As a result of this re-
striction, the statements and proofs of the corresponding limit theorems are
greatly simplified. Only in the case of constant H do we have examples of
degenerate minimum points. Furthermore, if H is non-constant, then the
minimum points are non-constant, and we cannot guarantee that they are
finite in number except under the condition of non-degeneracy. Limit the-
orems for non-degenerate minimum points will be stated for general H.

S
The next theorem discusses the limiting behavior —:— It is obvious

generalization of the Curie — Weiss result (E1lis — Newman [6], Thm.
3.8).

Theorem 2.3. Assume that G has finitely many minimum points,
Y ¥ gsnwadns Some a2 1. If =1, then
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S 1
(2.10) 22 [y
h 0
If a= 1, assume either that each Y}.* is non-degenerate or that H is a
constant function and at least one Y;‘ is degenerate. For j=1,...,a, let
k; denote the type of Y’.* and define k := max Rl =1 . ,a}. Let
1

le e ,fﬂ be the distinct numbers in the set {0[ Yj* dt: k]. =k, j=
=il a}. Then there exist positive numbers {b].; i=1,...,8} so
that

S 9

N _
Q1 jzz; b;85 .

The numbers {bj} are defined in (5.6).

We note that if a= 1, then (2.10) holds even if YT is a non-con-
stant, degenerate minimum point.

For the other limit results, assume that G has a unique minimum
point Y*. Then (2.10) holds with Y} = ¥*. The statements for arbitrary
o> 2 appear in Section 5. The following are obvious generalizations of the
Curie — Weiss result (Ellis — Newman [6], Cor. 3.10). Given ¢* > 0,

we denote by dN , a Gaussian measure with mean 0 and variance 0?;
a

N(o?) denotes the corresponding random variable.

Theorem 2.4. Assume that Y* is the unique minimum point and
that Y* is non-degenerate. Then

|
S, —n[Y*dt
(2.12) 2 Zan , .
Vn Oy

where o3, isdefined in (5.8).

Theorem 2.5. Assume that H is a constant function. Assume that
Y* = y*, a constant, is the unique minimum point and that Y* s de-
generate. Then
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Rulk
S!l — ny 9, exXp [— (2k)' ] du

(2.13) L
s Au
ok kfexp {= -(»*2?),—] du

where k and N\ denote the type and strength, respectively, of Y*.

3. FUNCTIONAL ANALYSIS

We first state our hypotheses on the functions J and H in (1.1). We
then define the two kinds of minimum points (non-degenerate, degenerate)
and the terms type and strength. Examples of the various kinds of mini-
mum points will be given.

The function J isto be an even element of #, so that
(3.1)  J()=J(@0)+ 2 Zl J(p) cos 2mpt,
p:
where
5 1
J(p) := [ J(t)(cos 2mpt) dt.
0

The probabilistic analysis in Section 4 involves an approximation jn (p)
to J(p), defined by

32  J@:= Zz Jp+ijn), pez ne{l,2,..},
jE
where we define f(p)=j(|p|) for p< — 1. Asa functionon Z, fn(-) is

even and periodic of period n.

Our hypotheses on J are that J€# iseven; J>0 on [0, 1];
JO)=1, J(p)>0 forall p#0 (ie., J positive-definite); J€ C*; and

J(p) < J, () < Lip),

(3.3)
|p|<[g], n=1,2,..., forsome L€ (1,»).

Of the function H, we require that H€ # N C. H is not assumed to be
a constant function unless otherwise specified.
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19

We comment first on the hypothesis that J€ C*. HE€ C™. Actually,
to prove Theorem 2.1 and a few of the simpler probabilistic limit theorem,

> ;).f(p) <o and HE # are enough. For the other probabilistic limit
pPEZ

: ; const
theorems, more smoothness is required: J(p) < ——F——

IP |6 +e?
p€ Z\{0}; in those cases where we do not require / constant, we need

|H(p)| < l""rfg, all p€Z\{0}. These boundson J and H holdif #
P

and H are C~. We assume .f’(O) = 1, which is the same as (1.3). The
lower bound in (3.3) is automatic because in (3.2) J(p + jn) > 0, all j# 0.

some €> 0, all

We note that because of our assumptionson J,
(3.4) 1 =J(0)>J(p)>0 forall p# 0.

Just check
1

(3.5) j(O) — f(p) = [ J(t)(1 — cos 2apt)dt > 0 for p# 0.
0

This fact is an important element in the proof of Theorem 2.2.

We now turn to the functional analysis. We regard # C L%[0,1] as
spaces of real-valued functions: || —|| denotes the supremum normon #;
(—., ) and || ——Il2 denote the LZ[O, 1] inner product and norm, respec-
tively. For Ye L 10; 1] consider the Fourier expansion

(3.6) Y= 2 );’(p) exp (2mipt),
pPeEL
where

1
}.’(p) = [ Y(r) exp (2mipt) dt.
0

By taking real parts of (3.6), we express Y as an expansion in terms of the
functions
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V2 cos2mpt, pe{l,2,...},
(3F) Bp(t) = i p=0,
fesliZapr pETE -2 1)

We have for Y€ L2[0,1]
38) Y= 2 y(p)B, (),
pPeEZ

where
¥(p):= (Y,B,),

(39  IYIE= pg; W)

In terms of the numbers {f(p)}, the integral operator # in (2.4)
assumes a simple form:

(3.10) for Y asin(3.8), SY= 2 J(p)y(p)B..
. PEZ ¥

# is symmetric, positive-definite, and trace class. The square root | ¢
of # isa symmetric, positive-definite, Hilbert — Schmidt integral oper-
ator with kernel J (t—s), where

2

@B.11) Ji(D:i=1+2 Z] V}E;;; cos 2mpt.
p i e

Alternatively, V# is defined as in (3.10) with {Vj(p)} replacing {j(p)}_
I 1

19—
(]|

Write # 2 for (V) !. Thedomain (4 2) of # is the set

(3.12)  #, :={Y|Y asin(3.8) with ZZ PN 1 (p))? < =}.
pe

H# 4 is a Hilbert space with norm

L
2

(3.13) Y] ,.,—:={ngz Jp) ' op)?)



We claim # , C #. This follows from the inequality

G4 3 @Iy, 2 Jp)<e, YeEX,.
p=Z peEZ

If (j(p)) ' is a polynomial in p?, then #, isa periodic Sobolev space.

We rewrite the functional G defined in (2.6). Define the functional
F on # by

|
(3.15) F(Y):=—[ oY+ H)dt, Ye¥.
0

Then

Liviz +Fn, vex,
(3.16) G(Y) :{ ;

+ oo, YEH\ KL,
By (5.17) and F<0 (since ¢>0 on R), it follows that G is bounded
on J# ;.

We next define the various types of minimum points. Given j€&€
€{1,2,. .5 FX5- 2 Y,€ #,, we define the Gateaux derivatives

DIG(Y, Y ;o Y))i=
(3.17) . J
d’
(¥+ I;Z; inr'”wl:...:wj=0'

iy
a’wl T .dw].

(i A

. we write D/G(Y, Y{) instead. Forall Y,Ye& #,,

one finds
(@) DGY,N=(g 'Y -p'(¥+H)Y),
(3.18) (b) D2G(Y,YH)=(fF 'Y -p"(Y + H)Y,Y),
(b) DIG(Y,Y))=(—Y(Y + H), Y, j=>3.

Let Y* bea minimum point of . Then Y*€ # , and DG(Y*,Y)=0
forall Ye #, (Berger [1], p. 301). Thus,

(3.19) F-l¥y*=9'%(Y*+ H).
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This is the Euler — Lagrange equation for the minimization problem of
Theorem 2.1. By (2.4), it may be expressed in the form of a Hammerstein
integral equation (Tricomi [17]).

1
(3.20)  Y*@) = OfJ(t — )" (Y*(s) + H(s)) ds.

We define .#,+ asthe operator
(3.21) M, WY:=9"(Y*+H)Y, YelL?0,1);

since Y*,He€ % and ¢" is smooth, .#,« isa bounded operator. We
also note that ¢">0 on R (¢"(y) is the variance of the measure

exp (yx)dp(x)
[ exp (vx) dp(x)
gperator. Because Y* is a minimum point, D?*G(Y*,Y?)>0 for all
Ye #,. Thus

, which is not a point mass). Thus, My % is a positive

Hyw:= g1 — . isnonnegative semi-definite
(3.22)
on (¥ ]).

For the rest of this section, we write .# instead of Moy

Definition 3.1. The minimum point Y* is non-degenerate if # y*
is positive definite on Z(y ~'). Y* is degenerate if Ay« has a non-
empty nullspace ./ (A yx).

Since N( Ay x)={Y: MY =Y}, the dimension of .1 (A yw) is
finite by the compactness of M. We have agreed to consider the de-
generate case only for H a constant function. We state a useful criterion.
If H=h, aconstant,and Y* = y* a constant, is a minimum point, then
Y* is either non-degenerate or degenerate according to whether

(323)  @"O*+M<UO) =1 or ¢"G*+ )= [FO) ! = 1;
@"(y* + h) cannot exceed one because of (3.22). Also

if o"(*+ h)=1, then 4 (A", «) is spanned
(3.24) :
by the function 1.
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The classification according to (3.23) and the fact (3.24) follow directly
from (3.4), which is a consequence of the assumed positivity of J. One
may use Theorem 2.2 to find measures p for which ¢"(y* +h)=1,
where Y* = y* isa minimum point.

In the non-constant case, Y* will be non-degenerate if

(325)  max @"(Y*(H)+ H()) < JO) ' = 1.
te|0,1)

For (3.25) to hold, it suffices if the measure p is even, 9"(0) =

= [x¥dp(x)< 1, and p has the so-called GHS property: ¢"(y)<0
for all y>0. Then ¢" is decreasing so that ¢"(y)<¢"(0)<1 for
all y real; (3.25) follows. A large class of measures satisfying the GHS
property is known (Ellis — Newman [7]). In the non-constant case,
we have no examples of degenerate minimum points.

We comment on the hypotheses of Theorems 2.3-2.5 that either the
minimum points be finite in number or that there be a unique minimum
point. The case of constant H is covered by Theorem 2.2. If H is non-
constant, then there will be a unique minimum point Y* if (j(O))*l =
=1>max¢"” on R (Tricomi [17], p. 212). One can prove by the
method of steepest descent (Berger [l], p. 128) that the minimum
points of G are finite in number if they are all non-degenerate.

We next define the terms type and strength. Let Y* be an isolated
minimum point. If Y* is non-degenerate, we define the type k= k(Y™)
to be one. Now say Y* is degenerate (we specialize to the constant
case in a moment). Then for fixed Y€ # , and all real 6+ 0 suffi-
ciently small, G(Y*+ 8Y)> G(Y*). Since G is an analytic functional
(Berger [1], § 2.3), there exists an integer k> 2 such that

DIGCY ) ¥iy= @v-for  p=2]3,.) .. . 2k = 1,
(3.26)
i B e b

Definition 3.2. Let Y* be an isolated minimum point of G. We de-
fine the type k(Y*) of Y* by
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1 if Y* is non-degenerate,
(3:27) k(Y*):={

k* if Y* isdegenerate,
where £* is the smallest integer satisfying (3.26) as Y runs through
_.1'(th},*). Let H = h, aconstant, and assume that Y* = p*, a constant,
is degenerate. Then A(Y*) is the integer k> 2 with the property that

(@ @"O0*+h)=1, eV0*+h)=0 for j=3,...,2k—1.

(3.28)
(b) ¢y *+n)<o.

The definition (3.28) of k(Y*) in the constant case follows from
the fact that if Y* is a degenerate, constant minimum point, then Y* is
isolated and ( A"y «) is spanned by the function 1. Again, in the case
of constant H, examples of minimum points with different types are
provided by Theorem 2.2.

We now define the term strength. If Y* is a non-degenerate minimum
point of G, then one may prove that the operator Xy« defined in (3.22)
is invertible. We define

(3.29) Fyai=(ay )L
Definition 3.3. Let Y* be a minimum point of G. We define the
strength NMY*) of Y* by

[(fy«1,D]" ', is Y* isnon-degenerate,

(330)  AYH =1 92 (y* + h), if H=h, aconstant,and

Y* = p* aconstant, is degenerate with
k=k(Y*)= 2.
For Y* non-degenerate, the limiting variance 0',’;,* in (2.12) is de-
fined by o}« = (MY*))"! — 1. Therefore, we need the following fact.

Lemma 3.4. If Y* s non-degenerate, then (MY*) !> 1 and
0'??* > 0.

Proof. One may prove that if Y* is non-degenerate, then



331y g = ohE ey F Z(; VT VI YNT .
=

Writing 1= # "1, we have
| ST -1 -1 =

(3.32) =(J '+ M+ HI MM FHE M+ ]],1)>
S g 1, 1= 1;

the last step follows from the positivity of ¢" and of the kernel J of
5.1

Remark 3.5. The — 1 appears in the definition of strength in the
non-degenerate case to stay consistent with the definition in Ellis —
Newman [6],[8], Ellis — Newman — Rosen [9].

4. PROBABILISTIC ANALYSIS IN FUNCTION SPACE

For this section, the function J and H are assumed to satisfy the
hypotheses of Section 3. In Lemma 4.1, we represent the partition func-
tion Z, in (1.2) as an expectation with respect to a Gaussian probability

measure P, on ¥. This representation is the key to proving (2.7) in
Theorem 2.1. Next, in Lemma 4.2, we relate the distribution of Snl _’:(
¢,y constants, to a probability measure Q, on # which is absolutely
continuous with respect to P,. Theorems 4.5-4.7 give the limits of suita-
bly scaled and centered versions of Q. In Section 5, we prove Theorems
2.3-2.5 from Lemma 4.2 and Theorems 4.5-4.7. Proofs of the latter theo-
rems will appear in Ellis — Rosen [10]. In Theorem 4.8, we give the
first term in the asymptotic expansion of the integral (4.10) which re-
presents Z . The connection between this and Schilder [15] was
pointed out in the Introduction. Finally, in Theorem 4.9 we state limit
results for the random field {Sn,w; We #} defined at the beginning
of Section 2. These limit theorems follow from an analogue of Lemma 4.2

and from Theorems 4.5-4.7.

The probability measures P and Q, alluded to above are defined
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in terms of the Fourier analysis of Section 3. Matters are simplified if »
is restricted to odd integers; even integers »n can be accommodated by
changes in notation.

Convention. Throughout Sections 4 and 5, the positive integer n
representing the number of sites in the ferromagnetic system is always odd.

Let n=1 be given. We define an n-dimensional subspace &, of
L?[0,1] by

4.1) F = { Y ¥ = Zn’_ y(p)Bp, »(p) real}.
Ip1< s

Denote by 7, the orthogonal projection onto T,

(4.2) for Y= 2 »(m)B, € L?[0,1], 7= P v(p)B, .
peZ p i el P
2

We define the finite-rank operator S, by

Y= 2 0008,

Ip1< 5

(4.3)

for Y:= 2 p(p)B, €L?[0,1],
PEZ P
where the numbers '_[jn(fi)} are defined in (3.2). Clearly, ¥,k = # 1

nn’
Fire e on f” , and i is positive-definite on T We define

(4.4) Xoo= LT

The operators {.#,} approximate the operator # in (2.4): Ty
in trace class norm.

We define P, to be the Gaussian probability measure concentrated
on 7  with mean O and covariance operator ,,?". Equivalently, P. i3
defined by

(4.5) [ w(Y)dp, (v):=
L2]0,1)
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1
& ﬂ cem,en ? Ty 2 y(p)B,) %
R |P|$n21

X exp [— é > @)’ ] 17 | dy(p),

|p|f-=:—I S, (P) Ip1<™5

forall Y € C(L?[0, 1]).

We define P to be the Gaussian probability measure on L?[0, 1] with
mean 0 and covariance operator #. P is concentrated on #. From now
on we restrict consideration to # since all measures will be concentrated
on that space. One may prove

(@6)1 Pl P

where = denotes weak convergence of measures [f ydpP, - f VdP for
all Y € C(#)). We define the nonlinear functional F,: # - R by

I [\4::

@D F=-u Sel@n(@) +H(E). vew.

I

If 7,Y were replaced by Y, the resulting functionals would be a Riemann
approximation to the functional /° defined in (3.15). One can prove that
if {v,}c¥ YeJd,, and |Y, -YIl- 0,
(4.8)
then F (Y,) = F(Y).

Finally, we define the probability measure @, by

exp (—nF (Y))dP, (V'nY)
Iexp (—nF, (Y))aP,(/nY)

4.9)  dQ,(Y):=

Here and below, all integrals involving PSP, are integrals over # un-
less otherwise noted. Using property (1.4) of the measure p, one may
show that the integral in the denominator of Q, converges.

The connection between all these definitions and the model in Sec-
tion 1 is revealed by the following lemma.

o



Lemma 4.1. The partition function Z, defined in (1.2) has the re-
presentation

(4.10)  Z, = [exp (— nF, (Y))dP,(YnY).

Remark 4.2. We discuss what would happen if the factor ’—II multi-

1
un)

plying J in (1.1)«(1.2) were replaced by another positive factor
Then (4.10) would become

(4.11)  Z, = [ exp (—nF,(Y))dP (Yu(m)Y).

If ﬁ - const > 0, then the only changes in our limit results are changes

of scale (unless const = 1). If p_gﬁ—* e then it is impossible to define

the specific free energy for the system and there are no limit theorems. If
R% -~ 0, then (u(n))~!In Z, - —infl over %, there is exactly one
non-degenerate minimum point at ¥Y* = 0, and the only limit theorems

=il
u(n)
essentially the only interesting one.

are 2,0 and Tﬂ,";—) “, Gaussian. Thus, the choice u(n)=n is
u(n

Proof. We use Fourier analysis for real-valued functions on the group

Z[nZ. Given X,,..,X, real, we define numbers {x(p); Ip|< %}

P

), Ipl'é."gl.

Then

4.12) X;= Z’:lx(p)Bp[%].

IpIs——=—

The quadratic form in the exponent of (1.2) can be rewritten as

n =
(4.13) pr ok J[—]ﬁ—’-] XX=n 2 | J (0 x(p)?.

1
niji=1 n n =
Ipl<—3
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We substitute this into (1.2), then introduce new variables {y(p): Ipl<

1 — 1
%iLi—}:
f
H exp [% nl(p)(x(p))?) =
pi< 25t
o {(21rJ @) g f exp (Vnx()y(p) -
5
= M] dy(p)
2,(p)
(4.14)

Il

- A
IT@ri, ) 2 | exp (3 Vnx@)yp)) x

Ri?

X exp (—ZMR(D;;]]].JP(P)-

n

Now use Parseval’s identity

(4.15) 2 x(pyp) = lz Z XY,
ipl<?5
where Y, := > »(p)B, [{;] , and do the integration in (1.2) with
Osps—

respect to ]po(Xf). Identifying Yf. with Y(l) for Y€ 7, and using

(4.5), we find Z(n) = [exp (— nF { ]]dP (Y), which implies (4.10).8
¥ =ne
The next item is to relate the distribution of T the measure
n
Q, in(4.9).Given v real, we define the probability measure do, T(Y) =
= dQ”(n SRS A

¥

&
exp (—nF, [——)) dP (n* Y)

(4.16) dQ,6 (Y):= Zon

n.y
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We used (4.10) to rewrite the denominator of Q,-

Lemma 4.3. Let constants vy and c be given. Define h,,: #-> R by
1
(4.17)  h (Y):=(, 00" ' [yvdt, Yew,
0

and let Y be any element of # so that h, (Y)= c. Define
(418) 037:: (jn(O)nl --2’]')..1

and let NR'T be an N(O, ofm) random variable which is independen-
dent of the spin random variables {X\™,... X"} Then for any real

number s

S e

(4.19)  Prob { ;’1_7 +N, <s}=0Q, {Y:h,(Y-n"V)<s};
Le.,

5. e . _ )
(4.20) n'—_7+ Nn"r is distributed by dQn'T(- + " Yok .

Remark 4.4. For Theorem 2.3, we will pick ¢=+v=0, Y =0; for
1

Theorem 2.4, y= 3, ¢=(/,(0)~" [ ¥*dr, 7= ¥*; for Theorem 2.5,
0

Y= ﬁ and the same ¢ and Y asfor Theorem 1.4.
Proof. (4.19) is equivalent to

S —nc
:I-'y ]}=

E{exp (r
(4.21) 1
= exp (— 5 r2a;) [exp (r[h,(Y) —n7c] dQ, (V)

each r real, since h” is linear, h"()?) = C, N’I is independent of iy
and Eexp (rN,) = exp (% rzoﬁ]. [t suffices to prove (4.21) for ¢= 0

since both sides contain the same multiplicative factor exp (—m7c). We
write Z(n, H), F, (Y, H) for Z(n), # AY). Then for r real
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s Z(n.H+ —=7)
E{exp (r—=5)}= 7 n =
n H,H)

[exp (- nF, (Y, H+ HT’;]) dP, (VnY) _

Z(n, H)
Jexp (—nF, (Y + nl”_T JH))aP, (YnY)
(#.22) = Z(n, H) -
[ exp (—nk, (Y, H)yaP, (Vn (¥ - nl” -))
- Z(n, H) s
5 RO
— PO —
exp [ 2 ul ) [ exp (rh, (n"Y)) exp (— nF, (Y, H)) ae,(ynY)
B Z(n, H) '

Changing variables Y = n~ 7Y, we obtain (4.21) with ¢= 0.1

In order to state the limit results for Q'mr , we need more definitions.
If Y* isa non-degenerate minimum point of G, then one may prove that
the operator ¥, « 1= (H'y )~ I defined in (3.29) is symmetric, positive-
definite, and trace-class. Thus ¢ ,« is the covariance operator of a mean
zero Gaussian measure on # (Varadhan [19], p. 72), which we call
Py*. Given T a trace class operator on LZ[O, 11 with eigenvalues {,u}.},
we define

(4.23)  Det(/—T):=[](1—u).
/

Det (I —- T) converges nicely and is called the characteristic determinant of
T (Gohberg — Krein [12], § 4.1). For Y* a non-degenerate mini-
mum point, the quantity

I\.ai—

(424)  Ayu:=Det( — VI My 2VF))

arises. A, . is well-defined since VS My «VF s trace-class and
I — l":?’_MY* V# is positive-definite.

In the limit theorems, the two types of convergence which arise are
weak convergence and vague convergence on #. The first was defined
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after (4.6). To define the second, we say that a function Y: # - R van-
ishes uniformly at infinity if for any € > 0 there exists D € (0, %) so that
| Y(Y)| < e whenever | Y|l >D. Given probability measures {.En; ni=
=1,2,...} and a measure £ on ¥, we say that the £, tend vaguely to

£, and write £, > &, if [ydg, > [ydE forall y € C(#) which vanish
uniformly at infinity. For Y € #, 8, denotes the point massat Y.

Theorem 4.5. Assume that G has finitely many minimum points,

Yf,...,Y:, some a=1. If a=1, then

425) Q,= 6,,;,.
If a=1, assume either that each Y is non-degenerate or that H is a

constant function and at least one Y;*‘ is degenerate. For j=1,...,a, let
k]. and 7\;. denote the type and strength, respectively of Y].* and define

Ay k=1 k=1,
(4.26) b]. = 2k,
SR ee el :
}{exp ( (k! )du if k> 2.

Define the maximal type k by

427 k= max {k;: j=1,...,a}

and let
0 if k].<l?
b= b, "
(4.28) bf. {54 if ki.=k.
b.
{k!-:f}
Then

(429) 0, =,-:Z; b8y .

We note that if a= 1, then (4.25) holds even if Yy is a non-con-
stant, degenerate minimum point.
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The next two theorems give the fluctuations about the minimum
points Yj?*, first in the non-degenerate case, then in the degenerate case. We
have stated them separately to emphasize the very different nature of the
limits: Gaussian measures on all of # versus measures concentrated on a
one-dimensional subspace of #.

Theorem 4.6. Assume that G has finitely many minimum points

Yi,..., Y, some a>1, and that each Y is non-degenerate. Then for
edel =3, s in50
(430) Q (+1Vn Y;'){ N
n, 2 J:.“" b/PY‘,* lf a? 2.
" Ay »
In this case, b, := S
=1 7

Given a probability measure § on R, §% denotes the probability
measure on # defined by

4.31)  [yde* = [yl diw), e ().
¥ R

Given k= 2 an integer and A > 0, we define Ek..\ to be the probability
measure on R

exp [— (27;)! u“] du

X :
i exp (- 0! uz"] du

(4.32) d&'k.k(u) =

Theorem 4.7. Assume that H is a constant function. Assume that G
has finitely many minimum points Y7,..., Y, a= 1, such that o, = l

of them are degenerate and the rest non-degenerate. Let kf., ?\’., b!. F=
=1,...,a) and k be as in Theorem 4.5. Then for each j=1,...,q,

1
433 snyn LBt i k=R
433) 0 , C+nNiyn LB o k=

H, 2‘.]
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If a=1 or, more generally, if there exists a unigue index j (say j= 1)
so that kf. =k, then (4.33) can be strengthened to

2. =
2k

(434) @ (- +n lyf):"ffl-h‘

1

The next theorem is obtained from a result which arises in the proofs
of Theorems 4.5-4.7. Setting ¢ =1 in (4.36) gives the first term in the
asymptotic expansion of the integral (4.10) which represents Z(n). To
simplify the statement, we assume that G has a unique minimum point
Y*. We define

h.)lo—-

@35) A= Il a-Jen] *;

the infinite product converges and is non-zero because of our assumptions
on J and (3.4).

Theorem 4.8. Assume that G has a unique minimum point Y™,
Assume that Y* is non-degenerate or that H is a constant function and
Y* = y*, a constant, is degenerate. Let k and N denote the type and
strength, respectively, of Y*. Thenas n — oo,

enGur [ Y(Y) exp (— nk, (Y)) dPn(VE Yy=

W(YAy e +o(l), if k=1,

4.36 SO
( ) ={p? % {WA_ vor*) [ exp [_ [ A uz"‘])du + o(l)]
R 2k)! '

if k&2,
forall e C(¥).
We end this section by discussing the asymptotics of the random field

n .
{S, ws WE ¥}, where S, , := ,-:2; W(ﬁ) Xl.“”. To simplify the state-
ments, we assume that G has a unique minimum point Y*. We have
proved the theorem under the hypothesis that We .77 ., some m =1

(7, is defined in (4.1)). We have do doubt that by an approximation
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argument one can extend the theorem to coverall We 2(.# 13,

Theorem 4.9. Let G have a unique minimum point Y* and pick
We Fm, some m=1. Then

S [y
(4.37) "—};W—-"» (S W, Y%).

Assume further that Y* is non-degenerate and that W is not identically
zero. Define

(4.38)  0Fxy =Sy W, ST IW) (ST IWW).

Then 0%« , >0 and

S i E LYY 1 2
(4.39y ' Lol — — e = 4
Vn |/21roy*’w Oy* w

Now assume that H is a constant function and Y* = y*, a constant, is
degenerate of type k= 2. Then

] du.

Spw —m*" LW,

(4.40) 8, if (1,w)=0,

a2k
2.1 exp (=), W) du

k qu if (l’ W) :’& 0’
14 exp (A ; W] du

A

W’ N being the strength of Y*.

where N, :=

The limits (4.37) and (4.40) are consistent. If Y* = y*, a constant,
then the right hand side of (4.37) is y*(1, W). We point out two interest-
ing features of (4.37). Applying (4.37) repeatedly with W = Bp, PEZ,
we are able to reconstruct Y*. Indeed, for each W = BP, (4.37) gives us
the Fourier coefficient (B _, Y*). Also, if we take a sequence of W’s to
approximate the characteristic function of an interval ® of [0, 1], (4.37)
suggests that
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4.41 XmZ, 5 :
s ! f r=rps

b it
nE'D ]

S

i.e., in the thermodynamic limit, (1.1)«(1.2) is described by the non-random
field

(4.42) X :=(F 1Y) =o' (Y*)+ H(D), te€]0,]1].

This should be compared with Ellis — Newman [8], Theorem 8. We
say a word concerning the proof of Theorem 4.9. For n > m, Lemma 4.3

. i 5 . 2 (jr: ; W, W) . 2
is valid with S",w replacing Sn, Op v = W replacing O
N, . :=NO,a2 ) replacing N, , and h,, :=(5,;'W, 1) re-

placing #,. The proof is the same (we need W€ 7 with m<n so
that 7, W = W; this is used in the third equality of (4.22)). The theorem
now follows from Theorems 4.5-4.7. To show Ui*,w >0, we use(3.32)
with W replacing 1 and find

8

(443)  o0}x WVl (F YW+ IV e Ft)WN2) > 0.

=

o

5. PROOFS OF THEOREMS OF SECTION 2

We first prove Theorem 2.2, then Theorems 2.3-2.5. We give the more
gereral statements of Theorems 2.4-2.5 without the assumption that there
exists a unique minimum point. Finally, we prove the first two parts of
Theorem 2.1, then prove (2.7) in the special case that / is a constant
function.

Proof of Theorem 2.2. The first assertion follows from (5.15) (see
below), which implies G_ (y) > + = as |y|— + e, and from the real
analyticity of G_. . The latter is a consequence of the real analyticity
of ¢.

Assuming H = h, we prove that if Y is a non-constant function,
then G(Y)> min G over #. Then the second assertion in the theorem
follows from the fact that G and G__  agree on constants. Define

(5.1) a:= min{G(Y): Y constant} =
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2
= rr;in G, =min {lé—* oy + h): y real}.

Thus, forany Y€ # and t€ [0, 1],

2
sy o+ m>a,

so that
1 1
5 2 0@ oY)+ hdt =
pEZ 0
(5.3) 1 1
= -% v2dt— [ o(Y + h)dt>a.
0 0

The first equality uses (3.9). Then

1
V) =1 3 den- o) - [ oY + hydt>
ZPEZ 0
(5.4) : s
a+ 5 - 1(p) - Dy(p)*.
p#0

If Y is non-constant, then y(p) is non-zero for some p # 0. Hence
G(Y)>a since J~ Lp)>1 forall p+#0 (by (3.4)). This is what we
wanted to show.

Now assume that G has a minimum point Y* which is a constant
y*. We prove that / isa constant function. By (3.19),

(5.5) y*=(FLY®)() = ¢'(* + H(1)) forall t€[0,1].

Since ¢’ is real analytic, (5.5) implies y* + H(¢) is a constant for all ¢ €
€ [0, 1]. Thus, H isa constant function.

The rest of Theorem 2.2 is taken from Ellis — Newman [6].B

The proofs of Theorems 2.3-2.5 are based in part upon the following
fact.

Lemma 5.1. Suppose that for each n,T, and U,k are independent

random variables such that U, Zs &, where / exp (iru) dé(u) # 0 forall
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r€R. Then T, p ifandonlyif Tn-I-UnL,u*E.

Proof. Weak convergence of measures on R is equivalent to point-
wise convergence of their characteristic functions. il

Proof of Theorem 2.3. We prove (2.10)(2.11), where

(5.6) b= 2 B, fel 8

1
{i [ v}ar=5,)
0
the {b,} are defined in (4.28). We use (4.20) with ¢ = y= 0 and (4.25),

1
(4.29). As n > oo, hn(Y) =+ ()= f Y dt, uniformly on compact subsets
0

of #. By Billingsley [2], p. 34.
(57 Q,oh;'=Qoh 1,
where @ stands for the right hand side of (4.25) or (4.29). We are done
since Noo— 8, (an,o - 0) and N",0 is independent of S .1
Proof of Theorem 2.4. We prove (2.12), where
(5.8)  olei=Y*N"!-1;

A(Y™) is the strength of the non-degenerate minimum point Y*, defined
in Definition 3.3; ¢2.>0 by Lemma 3.4. We use (4.20) with ¢ =

1

= (J"(O))_l [ v+ dt, v= %, Y = Y*, together with the case a= 1
0

of (4.30) with Y} = Y*. By Billingsley [2], p. 34,

59 Q@ ¢+VnY)oh 1=P, ,oh" !,

1

e
1

where  A(Y):= f Y dt, Ye #. Given an interval & of R,
0

1 1
Pyxoh™1(®@)=Py«{Y| [ Ydte ®}. We claim that under P,,, | Y dt
0 0

is distributed like an AN(0, (M(Y*))~!) random variable. Indeed, under
PY*, We may express
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(5.100 Y= 2 NO,u)S,
=1

where {p.;j=1,2,...}, {S,.; j=1,2,...} denote the eigenvalues (all
positive) and corresponding eigenvectors of '« and {N,(0,u); j=
=1,2,...} are independent normal random variables with mean 0 and
variances {F,-}- Thus,

| oo 1
2
(5.11) [ Yar isdistributed like N (O, 21 w ([ s;ar)’);
0 = 0

o5 1
2 . ;
but (MY*)~!:= (Fysli1)= Z; #j[foa'f] . This proves the claim.
i= 0

1 1
Since c¢:= (J?H(O))*1 [ y*dt- J Y*dt and N, L N(0, 1) in (4.20),
0 0 !

we are done by Lemma 5.1.1

Proof of Theorem 2.5. This follows in identical fashion from (4.20)
with ¢:= (J,(0)"'y*, v=3z ¥=Y*, and from (4.34) with k; = k,
MN=X ¥i=Y"0

We give the more general statements of Theorems 2.4-2.5 without the
assumption that there exists a unique minimum point. Under the same

hypotheses as Theorem 4.6 and with the same notation as Theorems 2.3,
2.4, 4.6, we have as a generalization of (2.12)

1 2, dN if a=1,
= 02 o
S,—n) Y} at Yy
0
(5.12 — =
) Vn = 2 bdN , if a>2,
1 1 : Uy’;lt-
[s: =
,:.bf Y,?‘drﬁ,[( Yjdej
for each j=1,...,a We emphasize that in general the second line is a

sum of Gaussian measures which is not Gaussian unless that {o%,_*} are all
]

1
the same. If the numbers {f ¢4 dr} are all the same, then the second line
0

of (5.12) can be strengthened to convergence in distribution.
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Under the same hypotheses as Theorem 4.7 and with the same nota-
tion as Theorems 2.3, 2.5, 4.7, we have as a generalization of (2.13)

1

*x Z s =
S —ny; {——%-60 if kj<k,

(5.13) A SR ik : 2
5 — bjEkj,?\f if kj =k,

foreach j=1,. ..,0 In(5.13), y]?* is the value of the constant function
Y,-*- There is a strengthening of (5.13) which corresponds to (4 34). (The

results (5.12)-(5.13) reduce to (2.2) if all the numbers {f Y* dr; j=

=AJu a} are distinct; then 6 = a.) To prove (5.12)«5. 13) one uses
Lemma 4.3 together with results from which Theorems 4.5-4.7 are proved;
unlike the proofs of Theorems 2.4-2.5, Theorems 4.6-4.7 are not enough.
The reason is that unlike weak convergence, vague convergence on % does
not in general carry over to vague convergence on R under a sequence of
continuous maps (like #,).

We now prove the first two parts of Theorem 2.1, then prove (2.7) in
the case that H isa constant function.

Proof of first two parts of Theorem 2.1. The operator V. is de-
fined after (3.10) and is invertible. The range of }.# is the space # 4
defined in (3.12). We proved # , C % in(3.14).

We next show that inf G over # is attained at some point of #.
Given & > 0, we prove that there exists a constant B so that

(5.14)  F(Y)>-38|Yl53-B forall Ye#.

O

o
Forany 6>0, x,y real, wehave yx<3 ¥+ F Thus

5 = =
(5.15)  p)<52+ 3B, B:=1nfexp(252]dp(x),
B < = because of (1.4). We have
1
(5.16) F(Y)=ﬁf‘p(Y+H)dt>——||Y+HH2 B>
0
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> —8IYI3— B+ 8IHI,

el
as claimed. Since || . 2 I, , =1, we have

(5.17) F(XY)>-38|lY|I2 —B forall Y€ #,.

It is clear that if G takes on its minimum over #, then it can only be at
a point of #,. On #,, G isabounded functional, and by (5.17), G
is coercive (take 0< & < 1). One can easily show that G is weakly lower
semicontinuous on #,, so that we are done by Berger [1],p.301.10

Before we prove (2.7) in the special case that /H is a constant
function, we comment upon the proof in the general case, which will
appear in Ellis — Rosen [10]. By Lemma 4.1, we must consider

n~!in fexp (- nFn(Y)) dPn(]/.Tr Y). If one replaces F, by the functional
F and P, by the measure P (defined after (4.5)), thenin Simon [16],
§ 18, or Donsker — Varadhan [5], § 6, it is shown that the re-
sulting expression tends to inf G over #. In view of (4.6), (4.8), the
statement (2.7) is then not surprising. We prove (2.7) by extending Simon’s
methods to the n-dependent case. In Varadhan [18], § 3, it is shown
that (2.7) follows if certain asymptotic properties of the measures P, are
valid (see (3.1) in that paper). While we are able to verify these properties,
we prefer the self-contained proof based on Simon [16].

Proof of (2.7) for constant H. To ease ‘the notation, we take
H=0; H=h, a non-=zero constant, is handled similarly. By Lemma 4.1
and Theorem 2.2, it suffices to prove

Lin fexp (- F, (%]] dP (Y)—
(5.18) , 5
— — inf {%— (). ¥ real} = sup {cp(.l-’) = '%—: ¥y real}_

We prove this assuming that J satisfies the hypotheses of Section 3 except
that J€ C™ isreplaced by

const

(5.19)  J(p)< —3>,
P |p|2+e

some €>0, all peZ.
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In Ellis — Rosen [10], we will prove (2.7) for general f/ € % assum-
ing only ‘Z'z pj(p) < oo instead of (5.19) and dropping (3.3). The latter
pe

will be used only to prove the probabilistic limit theorems (Theorems 2.3-
2.5,4.5-4.9).

We still work with odd n. The set 7, defined in (4.1), is isomor-
phic to R" by the correspondence

ngl}eR".

(5200 Y= 2 @B, € 7, — {yp): IpI<
Ipi< 9 :

Because of this, we consider [/ dy(p) to be a measure on 7 . (Here and

below, all products and sums over p are either for |p|< a ; 1, in which

case the limits are omitted, or for 1< |p| < .. ; ! , in which case we write

Il' and Z'.) We define

2
(521)  b:=sup {p() — % y reall;

b < e because of (5.15). We also define

e’ vt
V.= TT@nd, () 2 exp[_Z w[—"—]] x
=10 Vn
(5.22) 2
X exp (—1ZM], ye s

5 -
J, @)
By (4.5), the left hand side of (5.18) can be written as

n'

523 [ v, [Tdyp.

We prove (5.18) by proving

n—eo

(5.24) lim inf%ln [ v, Hayp)> b,

(5.25)  lim sup%ln [ v, Hayp)<b.
.‘7—"

n—eo
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Proof of lower bound (5.24). Given 0<§ ok ok v>0, M>0, we
define the subset ©, of 7, by

®, := {Y: 1y(0)| < MVn; |y(p)| < |]1/:5’

(5.26)

2
We choose M so that there is some y € [— M,M] with () — 22—= b.

Forany Y€ ©,, we have

|[Lj<rs Sl cen

(5.28) ” X—_V%Q) ” <V2 > J)—']%HQ (const) v,

(5.27)

estimates valid for all ®,. Let u> 0 be given. By the uniform continuity
of ¢ on [ C,C] and by (5.28), we may pick » so small that

=~

Y
gp[ ]([—)]>‘P(M]—M, al am»l,j=1....n"YeEQ.

Now
v, Mavey> IV, T ayp)=
s |y(o)|{:M Vn = [mp {%) L (j’; H(0) M%lﬁ] J
529 x GO [T Grj )7 Jexo[- 3 oy D0
V2a/ (0)
x 11" dy(p).

n—1
= < ———, 1< |p|< ;
where T, := {|y()| o+ 1<1pls =3 }
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Here and below, we write jn‘ Y(p) for (jn(p))* 1 The last integral in
(5.29) can be written as

vin n—1
|p|1+5’ ]€|p|€T}],

6300 &, ({7 i<
where {, isthe probability measure on R" "~ I defined by

(531) ¢, = H'(ann(p))_% exp [-2 T\ () Lm%LZ]]T dy(p).
Below, we prove

5.32) &, ({r: |y(p)|<‘E

| |1+6’

n—1

1< |pl< }]—+1 as n - oo,

We return to (5.29). By (5.19), since J(0) = 1< J, (0),

(533 0<1-J O <], @ -0 = 2o <5 const

nite’

so that .;?M_I(O)-+ 1. By Laplace’s method on R (Erdélyi [11], §2.4),
we have

534) fim 2 S exp [nfewon -y 1) YL ayo) =

now M y(0)IsM

and so by (5.32)

(5.35) hmmfnln fV I avip)y= b — p.

n-—s o

This gives (5.24) since u is arbitrary. We prove (5.32). First note that by
(3.3)and (5.19),

A )
|2+25 |pl2+26

| = const > 0,
36 ¥

1

all n>1, Fpléng
Thus,
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$3 20

¢, ({7: by 2 1<p< 25 <

Iy Mo p)? o
<n max . / e £ QaJ, () *dy(p)<
n—1
1<IpIS ST o> ulﬁa
Ipl
) 1
145 (J (p)?2 Wl pel )
< 2n  max {J_pi g exp [— ]}
n-1 |l v¥n  V2m 2 |p|A*2

I<|pl< 3
< (const)Vn exp (— (const)n) — 0,

where const stands for a positive constant. This proves (5.32) and com-
pletes the proof of (5.24).

Proof of upper bound (5.25)

Lemma 5.2.

(.38 Jp)<J,m<i@)+ 5, n>1, 1pl< T

i) -1 e
(5.39) Tp|—2+T> const > 0 for 5<-2-,

n sufficiently large, 1< Iplé%;
& uk

(5.40)  lim Il —J,p) * exists.

LET n-1

1<ipls=5

Proof. We have jn (p) = j(p) + 2{; j(p + jn). Using (5.19), one can
i

show that the sum is bounded by —Cg—ll%. This gives (5.38). Forall p# 0
R

sufficiently small, (5.39) follows from (5.38) and (3.4). For large p, we
have by (3.3) and (5.19),
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(5.41) J '@ —1>L7 1 @)~ 13> const [p|*t ¥

This gives (5.39). (5.40) holds since for all » sufficiently large and all

lﬁlplgn—g—fl-, I—j"(p)> const > 0 and since
(542) 0< 2 JT@< 2 Jp)<et
mlplgﬂ_:_l. pEZ

2

In terms of a number K > 0 to be picked later, we define three sets

which partition 7 :

©,(1):={Y: |¥(0)|< KVn},
(543)  ©,(2):={Y: |(0)|>KVn}nA,,

©,(3):=1{Y: [y(0)| > KVn}n (A€,

where
a4 A,={r: |v(d) —yo|<Z an j=1,.n).

We shall prove that for all n sufficiently large

(5.45) [ v, [Tayp) <

{(const)ﬁe"", for i=1,
9,)

(const)e™ for i=2,3.
r'his gives (5.25).

Upper bound for ©,(1). We have

n

(5.46) ;15 2 (YD) =00 fr ves,
2
Since p(y)< b+ % for y real, we have by (5.46)
]
()
(5.47) Z¢[ ]<nb+—Z’(y(p))2 for Ye7,.

Hence
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(5.48)

I v, [Tayp)<

®,(1)

.

<em@ui,©) 2 [ exp[3(1-J; 1 (0)(0(0)?] dy(©) X
I»(O)I<K Vn

1

2

XIT' Qa0 2 [ exp [~ 52 U5 )~ DO@)] dy(p) =

Rn—l

1
= ™ Jies T A

=3
2

X (2nd, (0)) [ exp [ (1= J7 1 0)0(0)?] dy(0).

Iy(0)I<K Vn

This is valid for all »n. sufficiently large by (5.39). By (5.33), the integral
involving y(0) is O(Vn). We obtain (5.45) for i= 1 by (5.40).

Upper bound for ©,(2). By (5.15), we can find K> 0 so that

2
(549 pp)<L for |y|>§.

Provisionally, this value of K is used in the definitions of the set in (5.43).
For Ye . 3 (2),

i
(550) | () |> Ll £

Vn o1 (R
so that by (5.49), (5.46)
n Y () 1
5.51) Z¢[ L ]s—Z(y(p))z, Yeo ().
=1 Vn 4 "

Hence for all n sufficiently large
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(5.52)

[ v, I[ldyp)<
e,(2)
R "
<@, > | _exp[-3(J, ' ©-3)0©O7] d(0)x
1¥(0)1>K Vn
e
2

x IT' @l @) ? x

x [ exp[-22 (07 @) - D)o@ | 1T avp) <

RM— 1
: J@ L . 1 _wp?
<l (1-2-) ?ed,on 2 | o % o<
Iy >KVn
1 2
) nk
< (const)n * exp (- g ).
By increasing K, if necessary, we obtain (5.45) for i= 2; this increased

K isused in (5.43).

Upper bound for ©,(3). For all n sufficiently large, we define the
probability measure £, on R"-! by

J-py—1 1
- I [ x
€3.33)
x exp [~ 32 Uy @)~ Do@P] T dy).

Forreal y(0) fixed, we define the set
1
(554 Q,0(0):= AS n {Y: 6[ Y dt = y(0)},
where A, is defined in (5.44). We prove below that for all n sufficiently

large there exist positive constants C 1 ¢, so that
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_Cap0)?
(5.55) £,(Q,0)<C¥Vne 2, for [p(0)|>KVn.

Using (5.47), then (5.55), we have for all n sufficiently large

(5.56)
I v, Havp) <
0,(3)
L .
<em [lni,en 2 1 _exp[d (=i O)0O] X
p(0)1>K Vn

x { I exp - % = (f; L) - D@ I dy(p)} dy(0) =
2, (y(0)

b=

L
=e" [T (1—J () 227 (0) 2 X

x [ exp[5(1—J; N(0)0(0))] £, (2, (:(0) dy(0) <
(0} 1>K Vn

< e’ (const) Vn I exp [—%_(C2 g (1 = O X
1y(0)1>K Vn i
Csk?
X (¥(0))*] dy(0) < e (const) Vn exp (-~ « .

This gives (5.45) for i= 3. We prove (5.55). Pick »> 0 so small that

~a+e ¢ 1 € < 2O
vpg’olp] oL where 0<6<2. If |y(p)l Ipl“'ﬁ’ fo

1< |pl< n; 1, then || Y—y(O){]ély—g—,—M, where Y := Z’y(p)Bp.
Thus,

£,(82,((0)) <
(5.57)

For any number a > 0, one may show by the same proof used in (5.37)
that
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& ({7: o)< 1<ipl< 254 <

(5.58)

< (const)g exp (— const)a?),

with const > 0. Thus

£, (82, (/(0))) < (const) 15w exp (— (const) (2(0))?) <

(5.59)

< (const) Vn exp (— (const)(»(0)?) for |p(0)|> KVn.

This gives (5.55) and completes the proof of the upper bound (5.25).8
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