NAME:

1. Consider the following matrix:

$$
\mathbf{A}=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right)
$$

(a) Find all eigenvalues and corrsponding eigenvectors of \mathbf{A}.
(b) Is A diagonalizable? Why? Why not?
(c) If so, write down the matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}$.
(d) Without calculating \mathbf{P}^{-1} what is the diagonal matrix \mathbf{D} corresponding to your \mathbf{P}.
2. A 5×5 matrix of real numbers, \mathbf{A}, is found to have the following eigenvalues: $\lambda_{1}=-2, \lambda_{2}=-1, \lambda_{3}=0, \lambda_{4}=1, \lambda_{5}=2$.
(a) Explain why \mathbf{A} is, or is NOT, diagonalizable.
(b) Explain why \mathbf{A} is, or is NOT, invertible.

NAME:

1. Consider the following matrix:

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 9 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(a) Find all eigenvalues and corrsponding eigenvectors of \mathbf{A}.
(b) Is A diagonalizable? Why? Why not?
(c) If so, write down the matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}$.
(d) Without calculating \mathbf{P}^{-1} what is the diagonal matrix \mathbf{D} corresponding to your \mathbf{P}.
2. A 5×5 matrix of real numbers, \mathbf{A}, is found to have the following eigenvalues: $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3, \lambda_{4}=4, \lambda_{5}=-1$.
(a) Explain why \mathbf{A} is, or is NOT, diagonalizable.
(b) Explain why \mathbf{A} is, or is NOT, invertible.

NAME:

1. Consider the following matrix:

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 3 \\
0 & 3 & 9
\end{array}\right)
$$

(a) Find all eigenvalues and corrsponding eigenvectors of \mathbf{A}.
(b) Is A diagonalizable? Why? Why not?
(c) If so, write down the matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}$.
(d) Without calculating \mathbf{P}^{-1} what is the diagonal matrix \mathbf{D} corresponding to your \mathbf{P}.
2. A 5×5 matrix of real numbers, \mathbf{A}, is found to have the following eigenvalues: $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=2, \lambda_{4}=3, \lambda_{5}=4$.
(a) Explain why \mathbf{A} is, or is NOT, diagonalizable.
(b) Explain why \mathbf{A} is, or is NOT, invertible.

