NAME:

1. Find the function $f(t)$ that satisfies:

$$
f(t)=\mathcal{L}^{-1}\left[\frac{e^{-s}-e^{-4 s}}{s^{2}+8 s+68}\right](t)
$$

2. Use Laplace Transform techniques to solve the following IVP:

$$
y^{\prime \prime}+4 y^{\prime}+20 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=0
$$

where the forcing function is given by:

$$
f(t)=\left\{\begin{array}{cc}
0 & 0 \leq t<1 \\
2 & t \geq 1
\end{array}\right.
$$

NAME:

1. Find the function $f(t)$ that satisfies:

$$
f(t)=\mathcal{L}^{-1}\left[\frac{e^{-s}-e^{-4 s}}{s^{2}+6 s+58}\right](t)
$$

2. Use Laplace Transform techniques to solve the following IVP:

$$
y^{\prime \prime}+2 y^{\prime}+65 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=0
$$

where the forcing function is given by:

$$
f(t)=\left\{\begin{array}{cc}
0 & 0 \leq t<2 \\
5 & t \geq 2
\end{array}\right.
$$

NAME:

1. Find the function $f(t)$ that satisfies:

$$
f(t)=\mathcal{L}^{-1}\left[\frac{e^{-s}-e^{-2 s}}{s^{2}+4 s+20}\right](t)
$$

2. Use Laplace Transform techniques to solve the following IVP:

$$
y^{\prime \prime}+6 y^{\prime}+58 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=0
$$

where the forcing function is given by:

$$
f(t)=\left\{\begin{array}{cc}
0 & 0 \leq t<5 \\
8 & t \geq 5
\end{array}\right.
$$

