1. Use the definition of the Laplace Transform (and maybe some intgration by parts?) to find the transform to
(a) $f(t)=t$
(b) $g(t)=\mathrm{e}^{-4 \mathrm{t}}$
(c)

$$
f(t)=\left\{\begin{array}{cl}
3, & 0<t<2 \\
0, & 2 \leq t \leq 4 \\
-3, & t<4
\end{array}\right.
$$

2. State the two shifting theorems for Laplace Transforms.

Use the shifting theorems to find the inverse transforms of
(a) $F(s)=\frac{3}{s+4} e^{-\pi s}$
(b) $F(s)=\frac{2 s-8}{\left(s^{2}-10 s+29\right)}$
(c) $G(s)=\frac{e^{-2 s}}{s\left(s^{2}+6 s+34\right)}$
3. Consider the following initial value problem:

$$
y^{\prime \prime}+4 y^{\prime}+40 y=t ; \quad y(0)=0, y^{\prime}(0)=5
$$

Solve this problem TWO ways: (1) Use 'regular' method to find homogeneous and particular solution (using undetermined coefficients) and (2) use LAPLACE TRANSFORMS.
4. Solve the following forced ODE using transforms:

$$
q^{\prime}+5 q=f(t), \quad q(0)=1
$$

where the forcing function is given by:

$$
f(t)=\left\{\begin{array}{rl}
1 & t<3 \\
-1 & t \geq 3
\end{array}\right.
$$

5. Use Laplace Transform techniques to solve the following IVP:

$$
y^{\prime \prime}+36 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=0
$$

where the forcing function is given by:

$$
f(t)= \begin{cases}1 & 2 \leq t \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

