
Eigen Problems and Diagonalization Using Matlab

An Eigenproblem for a given n × n matrix A requires finding the set of vectors, x, and the
scalar numbers λ such that

Ax = λx.

In other words, we want the vectors which, when operated on by A, are simply multiples of the
orginal vector. Geometrically, the eigenvectors of A are those vectors, x, such that Ax lies in
the same (or exactly opposite) direction as x. A simply multiplies its “own” (in German “eigen”)
vectors. Multiplication by A changes the direction of all other vectors.

Matlab allows for easy computation of the eigenvalues and eigenvectors of any square matrix.
For example, consider the following Matlab commands:

> A = [-3 1 -3; -8 3 -6; 2 -1 2]

A =

-3 1 -3

-8 3 -6

2 -1 2

To find the eigenvalues of A we could use the fact that the eigenvalues, λ satisfy the characteristic
equation given by

det(A− λI) = 0.

Matlab has an easy way of entering this. Simply use the poly command:

> p = poly(A)

p =

1 -2 -1 2

The result says that the characteristic polynomial is:

p(λ) = λ3 − 2λ2 − λ+ 2 = 0

This can be factored into:
(λ− 1)(λ+ 1)(λ− 2)

Which gives us the eigenvalues of A directly.
If you don’t see the factorization easily, Matlab is equipped to solve the characteristic equation

for you using the roots() command,

> eigs = roots(p)

eigs =

2

1

-1

1

Eigen Problem Solution Using Matlab 2

which gives the zeros (eigenvalues) of the polynomial directly.
Now we can solve for the eigenvectors of A. For each eigenvalue, we must solve

(A− λI)x = 0

for the eigenvector x. In Matlab the n×n identity matrix is given by eye(n). To find the eigenvector
associated with λ = 2 we could use:

> A1 = A - eigs(1)*eye(3) %Note: Use eigs(1) instead of ’2’ for accuracy

A1 =

-5 1 -3

-8 1 -6

2 -1 0

> rref(A1)

ans =

1 0 1

0 1 2

0 0 0

This gives us x = α

 −1
−2

1

 The same procedure could be used for the other two eigenvectors.

Try it!

Seems complicated? Once again Matlab has a fast way of accomplishing the same task. The
eig() command finds the eigenvalues and eigenvectors of a matrix directly. The output is given in
two matrices. The first is a matrix whose columns contain the eigenvectors while the second is a
diagonal matrix containing the eigenvalues.

> [V,E] = eig(A)

V =

881/2158 1292/2889 -780/1351

881/1079 2584/2889 -780/1351

-881/2158 * 780/1351

E =

2 0 0

0 -1 0

0 0 1

If the output looks a bit strange, its because matlab normalizes the eigenvectors so that (Vi ·Vi) = 1.
For instance we can make the eigenvector corresponding to λ = 2 look like that given in our previous
result:

Eigen Problem Solution Using Matlab 3

> V1 = V(:,1)

V1 =

881/2158

881/1079

-881/2158

> V1 = V1/V1(1)

V1 =

1

2

-1

Diagonalization: Matlab’s eigenvector output format is exactly what we need to diagonalize the
input matrix, namely a transformation matrix P = V whose columns are the eigenvectors of A. To
see the utility of diagonalization, consider the following set of nonhomogeneous, coupled ODEs

x′ = Ax + F

where x is the unknown vector of solutions and A is matrix of constant coefficients.
To solve the coupled set of equations via diagonalization, we first transform to new variables,

y using the transformation matrix V :
x = V y

x′ = V y′ = Ax + F = AV y + F

In terms of the new variable, y,
y′ = V −1AV y + V −1F

Since V −1AV is just the diagonal matrix of eigenvalues of A, this last set is completely UNCOU-
PLED and easy to solve.

As an example, consider the coupled set of 1st order ODEs equivalent to the single 2nd order
equation:

y′′ + 3y′ − 4y = 3e2t(
x′1
x′2

)
=

(
0 1
4 −3

)(
x1
x2

)
+

(
0

3e2t

)
Lets solve the homogeneous 1st order problem using Matlab to do the matrix calculations.

First set up the matrix A and find its transformation matrix.

> A = [0 1;4 -3]

A =

0 1

4 -3

> [v,d] = eig(A)

v =

Eigen Problem Solution Using Matlab 4

985/1393 -528/2177

985/1393 2112/2177

d =

1 0

0 -4

> v(:,1) = v(:,1)/v(1,1) %Note: Can multiply an eigenvector by a scalar

v = Here we rescale the eigenvectors to make

1 -528/2177 them ’prettier’

1 2112/2177

> v(:,2) = v(:,2)/v(1,2)

v =

1 1

1 -4

We will also need the inverse, V −1:

> inv(v)

ans =

4/5 1/5

1/5 -1/5

Now we have enough information to solve the problem. The uncoupled equations become:(
y′1
y′2

)
=

(
1 0
0 −4

)(
y1
y2

)
+

(
4/5 1/5
1/5 −1/5

)(
0

3e2t

)

Or, individually,

y′1 − y1 − 3e2t/5 = 0

y′2 + 4y1 + 3e2t/5 = 0

The solution to these linear, 1st order ODEs are:

(e−ty1)
′ = 3et/5

y1 = c1e
t + 3e2t/5

and

(e4ty2)
′ = 3e6t/5

y2 = c2e
−4t − 3e2t/30

To find the solution x, simply transform back:

x = V y =

(
1 1
1 −4

)(
y1
y2

)

Eigen Problem Solution Using Matlab 5

x =

(
c1e

t + 3e2t/5 + c2e
−4t − 3e2t/30

c1e
t + 3e2t/5 − 4c2e

−4t + 12e2t/30

)

x =

(
c1e

t + c2e
−4t + e2t/2

c1e
t − 4c2e

−4t + e2t

)

Matrix Powers by Diagonalization: The work required to find the nth power of a matrix is
greatly reduced using diagonalization. As we showed in class,

Ak = V DkV −1

where V is the transformation matrix of A and D is the diagonal matrix of eigenvalues of A.
Therefore Dn is simply the diagonal matrix containing λk on the diagonal. For example, consider
the following matrix:

A = [1 3 4; 3 -1 2; 4 2 2]

A =

1 3 4

3 -1 2

4 2 2

The computationally fast way of calculating A10 is to use diagonalizaton.

> [V,D] = eig(A)

V =

0.7040 -0.3182 0.6349

-0.6521 -0.6437 0.4005

-0.2812 0.6959 0.6607

D =

-3.3764 0 0

0 -1.6791 0

0 0 7.0555

> A10 = V*D^10*inv(V)

A10 =

1.0e+008 *

1.2330 0.7763 1.2819

0.7763 0.4911 0.8093

1.2819 0.8093 1.3347

We can check by direct calculation:

Eigen Problem Solution Using Matlab 6

> A^10

ans =

123304096 77633408 128193568

77633408 49109984 80925664

128193568 80925664 133474944

Which is exactly the same result. Note: Matlab probably performed the direct calculation using
diagonalization anyway!

