Material Covered:

- Text: Determinants: Chapter 8: Sections 1,2,3
- Text: Eigen-Problems: Chapter 9: Sections 1,2,3.1
- Text: Systems of ODES: Chapter 10: Sections 1,2,3

DO ALL PROBLEMS IN SYLLABUS FOR ABOVE MATERIAL IN TEXT!!!

1. Write down as many statements as you can that indicate whether an $n \times n$ matrix of real numbers is non-singular.
2. When is an $n \times n$ matrix of real numbers diagonalizeable?
3. Consider the following matrix:

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 3 & 2 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Find $|\mathbf{A}|$. Does \mathbf{A}^{-1} exist?
(a) Use row reduction to show that \mathbf{A} is non-singular. ($\mathbf{A}^{\mathbf{1}}$ exists)
(b) Find $\mathbf{A}^{-\mathbf{1}}$
(c) Show that $\mathbf{A}^{-\mathbf{1}} \mathbf{A}=\mathbf{I}$
4. Consider the following matrix:

$$
\mathbf{A}=\left(\begin{array}{rr}
2 & -1 \\
h & 2
\end{array}\right)
$$

where h is a real number.
(a) For what values of h is the matix NOT invertible?
(b) For what values of h is the matix NOT diagonalizable?
5. Find P and P^{-1} that diagonalize the matrix

$$
A=\left(\begin{array}{rrr}
1 & 1 & -2 \\
0 & 1 & 0 \\
0 & -1 & 3
\end{array}\right)
$$

Use the results to find A^{5}.
6. Consider the following second order ODE:

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

(a) Find the general solution by reducing the equation to a system of first order equations.
(b) Write the fundamental solution matrix.
(c) Given $y(0)=0, y^{\prime}(0)^{\prime}=1$, use the fundamental matrix to write the solution to the initial value problem.
7. Find the general solution to the following system of ODEs:

$$
X^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) X
$$

Write the solution in terms of the fundamental matrix.
8. Find the general solution to the following system of ODEs:

$$
X^{\prime}=\left(\begin{array}{rr}
0 & 1 \\
-5 & -6
\end{array}\right) X
$$

Write the solution in terms of the fundamental matrix.
9. Find the general solution to the following system of ODEs:

$$
X^{\prime}=\left(\begin{array}{rr}
6 & -1 \\
5 & 2
\end{array}\right) X
$$

Write the solution in terms of the fundamental matrix.
10. Find the general solution to the following system of ODEs:

$$
X^{\prime}=\left(\begin{array}{rr}
4 & -4 \\
1 & 0
\end{array}\right) X
$$

Write the solution in terms of the fundamental matrix.
11. Find the general solution to the following system of FORCED ODEs:

$$
X^{\prime}=\left(\begin{array}{cc}
4 & \frac{1}{3} \\
9 & 6
\end{array}\right) X+\binom{-3}{10} e^{t}
$$

