Explicit Bounds for Primes

in Arithmetic Progressions
arXiv:1802.00085v3

Michael A. Bennett, Greg Martin, Kevin O'Bryant, Andrew Rechnitzer

January 10, 2018

The Functions

$$
\begin{aligned}
\pi(x ; q, a) & =\sum_{p \leq x} \llbracket p \equiv a \bmod q \rrbracket \\
\theta(x ; q, a) & =\sum_{p \leq x} \llbracket p \equiv \operatorname{a\operatorname {mod}q\rrbracket \operatorname {log}p} \\
\psi(x ; q, a) & =\sum_{p^{n} \leq x} \llbracket p^{n} \equiv \operatorname{a\operatorname {mod}q\rrbracket \operatorname {log}p}
\end{aligned}
$$

All bounds flow from bounds on ψ.
Asymptotics known for a century.

Chebyshev-type Bounds

McCurley: $\theta(x ; 3, a)<0.51 x$

Chebyshev-type Bounds

McCurley: $\theta(x ; 3, a)<0.51 x$
Many: $\left|\psi(x ; q, a)-\frac{x}{\phi(q)}\right|<\epsilon_{q} \frac{x}{\phi(q)}, \quad x>e^{L}$
Each article has a page giving various combinations of q, ϵ, L
Many $=$ McCurley, Ramaré-Rumely, Bennett, Dusart, Kadiri-Lumely, others

de la Vallée Poussin-type Bounds

Explicit bounds that are asymptotically correct

- $q=1,2$: Rosser-Schoenfeld, many others

de la Vallée Poussin-type Bounds

Explicit bounds that are asymptotically correct

- $q=1,2$: Rosser-Schoenfeld, many others
- $q=3$: Dusart (2002)

de la Vallée Poussin-type Bounds

Explicit bounds that are asymptotically correct

- $q=1,2$: Rosser-Schoenfeld, many others
- $q=3$: Dusart (2002) For $x \geq 151$,

$$
\pi(x ; 3, a)>\frac{1}{2} \frac{x}{\log x}
$$

de la Vallée Poussin-type Bounds

Explicit bounds that are asymptotically correct

- $q=1,2$: Rosser-Schoenfeld, many others
- $q=3$: Dusart (2002) For $x \geq 151$,

$$
\pi(x ; 3, a)>\frac{1}{2} \frac{x}{\log x}
$$

- $q \geq 3$: Us (2018)

Our result

Theorem
Let $q \geq 3$ be an integer, and let a be coprime to q. Then

$$
\left|\psi(x ; q, a)-\frac{x}{\phi(q)}\right|<\frac{1}{160} \frac{x}{\log x} \quad \text { for all } x \geq x_{0}(q)
$$

where

$$
x_{0}(q)= \begin{cases}8 \cdot 10^{9} & \text { if } q \leq 10^{5} \\ \exp \left(0.03 \sqrt{q} \log ^{3} q\right), & \text { if } q>10^{5}\end{cases}
$$

Our result

Theorem
Let $q \geq 3$ be an integer, and let a be coprime to q. Then

$$
\left|\theta(x ; q, a)-\frac{x}{\phi(q)}\right|<\frac{1}{160} \frac{x}{\log x} \quad \text { for all } x \geq x_{0}(q)
$$

where

$$
x_{0}(q)= \begin{cases}8 \cdot 10^{9} & \text { if } q \leq 10^{5} \\ \exp \left(0.03 \sqrt{q} \log ^{3} q\right), & \text { if } q>10^{5}\end{cases}
$$

Our result

Theorem
Let $q \geq 3$ be an integer, and let a be coprime to q. Then

$$
\left|\pi(x ; q, a)-\frac{\operatorname{Li}(x)}{\phi(q)}\right|<\frac{1}{160} \frac{x}{\log ^{2} x} \quad \text { for all } x \geq x_{0}(q)
$$

where

$$
x_{0}(q)= \begin{cases}8 \cdot 10^{9} & \text { if } q \leq 10^{5} \\ \exp \left(0.03 \sqrt{q} \log ^{3} q\right), & \text { if } q>10^{5}\end{cases}
$$

The constant as a function of q

The website

http://www.nt.math.ubc.ca/BeMaObRe/

Theorem
Let a be coprime to 10 , and $x \geq 3375517771$. Then

$$
\left|\pi(x ; 10, a)-\frac{L i(x)}{\phi(q)}\right|<\frac{1}{2579} \frac{x}{\log ^{2} x}
$$

Let a be coprime to 3461 , and $x \geq 9367751$. Then

$$
\left|\pi(x ; 3461, a)-\frac{\operatorname{Li}(x)}{\phi(q)}\right|<\frac{1}{1204} \frac{x}{\log ^{2} x}
$$

Small q : Verifying GRH

GRH is equivalent to a certain quality error term, so results like this are billed as "verifying GRH".

Theorem
Let $q \leq 10^{5}$ and $(a, q)=1$, and $x \leq 10^{11}$ (or larger if q is small). We have

$$
\max _{1 \leq y \leq x}\left|\pi(y ; q, a)-\frac{\operatorname{Li}(y)}{\varphi(q)}\right| \leq 2.734 \frac{\sqrt{x}}{\log x}
$$

This is the computational limit giving $1 / 160$.

Small q: McCurley's Four-Terms Lemma

Let $x \geq x_{2}>2, H \geq 1, m \geq 2$ and $0<\delta<\frac{x-2}{m x}$.
Suppose that every L-function mod q satisfies GRH(1). Then

$$
\begin{aligned}
\left.\frac{\phi(q)}{x} \right\rvert\, \psi(x ; q, a) & -\frac{x}{\phi(q)} \left\lvert\,<\frac{m \delta}{2}+U_{q, m, H}(x)+V_{q, m, H}(x)+W_{q}(x)\right., \\
W_{q}(x) & :=\frac{\phi(q)}{x}\left(\left(\frac{1}{2}+\sum_{p \mid q} \frac{1}{p-1}\right) \log x+4 \log q+13.4\right) \\
V_{q, m, H}(x) & :=\left(1+\frac{m \delta}{2}\right) \sum_{\chi} \sum_{\rho}^{\rho} \frac{x^{\beta-1}}{|\rho|} \\
U_{q, m, H}(x) & :=\frac{A_{m}(\delta)}{\delta^{m}} \sum_{\chi} \sum_{\substack{\rho \\
|\gamma|>H}} \frac{x^{\beta-1}}{|\rho(\rho+1) \cdots(\rho+m)|}
\end{aligned}
$$

Local Effects are negligible

$$
W_{q}(x):=\frac{\phi(q)}{x}\left(\left(\frac{1}{2}+\sum_{p \mid q} \frac{1}{p-1}\right) \log x+4 \log q+13.4\right)
$$

Tiny.

Low Height Tools

$$
V_{q, m, H}(x):=\left(1+\frac{m \delta}{2}\right) \sum_{\chi} \sum_{\substack{\rho \\|\gamma| \leq H}} \frac{x^{\beta-1}}{|\rho|}
$$

- sum over all characters mod q
- $\rho=\beta+i \gamma, L(\rho, \chi)=0$

Low Height Tools

$$
V_{q, m, H}(x):=\left(1+\frac{m \delta}{2}\right) \sum_{\chi} \sum_{\substack{\rho \\|\gamma| \leq H}} \frac{x^{\beta-1}}{|\rho|}<\left(1+\frac{m \delta}{2}\right) \frac{C_{q}}{\sqrt{x}}
$$

- sum over all characters mod q
- $\rho=\beta+i \gamma, L(\rho, \chi)=0$
- Platt: verified GRH for $H=10^{8} / q$ with $q \leq 10^{5}$
- Rubinstein: lcalc, fast reliable computation of zeros
- Rosser: $N(T)<\frac{T}{\pi} \log \frac{T}{2 \pi e}+0.34 \log T+6$
- Trudgian: $N(T, \chi)<\frac{T}{\pi} \log \frac{q^{*} T}{2 \pi e}+0.4 \log \left(q^{*} T\right)+5.4$

Large Height Bound

$$
\begin{aligned}
U_{q, m, H}(x) & :=\frac{A_{m}(\delta)}{\delta^{m}} \sum_{\chi} \sum_{|\gamma|>H} \frac{x^{\beta-1}}{|\rho(\rho+1) \cdots(\rho+m)|} \\
& <\frac{A_{m}(\delta)}{\delta^{m}} \sum_{\chi} \sum_{|\gamma|>H} \frac{1}{|\rho|^{m+1}} \\
& \approx\left(\frac{2}{\delta}\right)^{m} \cdot C_{q}
\end{aligned}
$$

Large Height Bound

$$
\begin{aligned}
U_{q, m, H}(x) & :=\frac{A_{m}(\delta)}{\delta^{m}} \sum_{\chi} \sum_{|\gamma|>H} \frac{x^{\beta-1}}{|\rho(\rho+1) \cdots(\rho+m)|} \\
& <\frac{A_{m}(\delta)}{\delta^{m}} \sum_{\chi} \sum_{|\gamma|>H} \frac{1}{|\rho|^{m+1}} \\
& \approx\left(\frac{2}{\delta}\right)^{m} \cdot C_{q}
\end{aligned}
$$

Where are we?

$$
\frac{\phi(q)}{x}\left|\psi(x ; q, a)-\frac{x}{\phi(q)}\right|<\frac{m \delta}{2}+\left(\frac{2}{\delta}\right)^{m} \cdot C_{q}+\left(1+\frac{m \delta}{2}\right) \frac{C_{q}}{\sqrt{x}}+\text { tiny }
$$

Zero-free region

Suppose that $L(\beta+i \gamma, \chi)=0$, and $\beta>0$.
Then

$$
\beta \leq 1-\frac{1}{R \log \left(q^{*}|\gamma|\right)}
$$

- McCurley: $R=9.645908801$
- Kadiri: If $3 \leq q \leq 4 \cdot 10^{5}$, then $R=5.6$
- Platt: GRH

Revised McCurley

What happens with $q \geq 10^{5}$, without $G R H$?
McCurley's Four-terms Lemma needs to be adjusted! The main concern is the potential existence of an exceptional zero. Absorbing such concerns into $W_{q}(x)$ gives:

$$
\tilde{W}_{q}(x)<\frac{\varphi(q)}{x}\left(\frac{\log q \cdot \log x}{\log 2}+0.2516 q \log q\right)
$$

$L(1, \chi)$

Theorem
Let χ be a primitive quadratic character with modulus $q>6677$. Then

$$
L(1, \chi) \geq \frac{12}{\sqrt{q}}
$$

If $q \geq 4 \cdot 10^{5}$, then

$$
L(1, \chi) \geq \frac{1}{\sqrt{q}} \min \left\{46 \pi, \max \left\{12, \log \frac{\sqrt{q+4}+\sqrt{q}}{2}\right\}\right\}
$$

How exceptional is an Exceptional Zero?

Theorem
Let $q \geq 3$, and χ a quadratic character modulo q. If $\beta>0$ and $L(\beta, \chi)=0$, then

$$
\beta \leq 1-\frac{40}{\sqrt{q} \log ^{2} q} .
$$

The $x_{2}(q)$

We can get any positive number we want in place of " $\frac{1}{160}$ " by making x_{2} (where the bound becomes official) large enough. For any positive number, however, x_{2} is intractably large.

Small x

Theorem
Suppose that $3 \leq q \leq 10^{5}, \operatorname{gcd}(a, q)=1$, and $x \geq 1000$. Then

$$
\begin{aligned}
&\left|\psi(x ; q, a)-\frac{x}{\varphi(q)}\right|<0.19 \frac{x}{\log x} \\
&\left|\theta(x ; q, a)-\frac{x}{\varphi(q)}\right|<0.40 \frac{x}{\log x} \\
&\left|\pi(x ; q, a)-\frac{L i(x)}{\varphi(q)}\right|<0.53 \frac{x}{\log ^{2} x}
\end{aligned}
$$

Small q, small x

Theorem

Let $3 \leq q \leq 1200$ be an integer, and let a be an integer coprime to q. For all $x \geq 50 q^{2}$

$$
\frac{1}{\phi(q)} \frac{x}{\log x}<\pi(x ; q, a)
$$

and

$$
\pi(x ; q, a)<\frac{1}{\phi(q)} \frac{x}{\log x}\left(1+\frac{5}{2 \log x}\right) .
$$

The n-th prime in an AP

Theorem
Let $3 \leq q \leq 1200$ be an integer, and let a be an integer coprime to q. If $p_{n}(q, a) \geq 22 q^{2}$, then $p_{n}(q, a)$ is between
$N \log N$
and

$$
N \log N+\frac{4}{3} N \log \log N,
$$

where $N=n \varphi(q)$.

Meta Issues

A 100 page technical argument, with large chunks pushed through by computation. What could go wrong?

- How to avoid small errors?
(1) Special Cases
(2) Redundant Coding
(3) Vigorous self-refereeing
(9) Careful Writing
- How to inspire confidence that small errors have been avoided?
(1) Giving detailed code
(2) Giving detailed data
- Other
(1) Open source
(2) Easy to extend? Not so much...yet.

Thanks to the organizers

- Thanks to Yuri for scheduling
- Thanks to Amalia for hospitality
- Thanks to Universidad Valparaiso for facilities
- Thanks to Audience for the obvious

