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The Theorem

The Functions

π(x ; q, a) =
∑
p≤x

[[p ≡ a mod q]]

θ(x ; q, a) =
∑
p≤x

[[p ≡ a mod q]] log p

ψ(x ; q, a) =
∑
pn≤x

[[pn ≡ a mod q]] log p

All bounds flow from bounds on ψ.
Asymptotics known for a century.
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The Theorem

Chebyshev-type Bounds

McCurley: θ(x ; 3, a) < 0.51x

Many:

∣∣∣∣ψ(x ; q, a)− x

φ(q)

∣∣∣∣ < εq
x

φ(q)
, x > eL

Each article has a page giving various combinations of q, ε, L

Many = McCurley, Ramaré-Rumely, Bennett, Dusart, Kadiri-Lumely,
others
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The Theorem

de la Vallée Poussin-type Bounds

Explicit bounds that are asymptotically correct

q = 1, 2: Rosser-Schoenfeld, many others

q = 3: Dusart (2002) For x ≥ 151,

π(x ; 3, a) >
1

2

x

log x
.

q ≥ 3: Us (2018)
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The Theorem

Our result

Theorem

Let q ≥ 3 be an integer, and let a be coprime to q. Then∣∣∣∣ψ(x ; q, a)− x

φ(q)

∣∣∣∣ < 1

160

x

log x
for all x ≥ x0(q),

where

x0(q) =

{
8 · 109 if q ≤ 105,

exp(0.03
√
q log3 q), if q > 105.
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The Theorem

Our result

Theorem

Let q ≥ 3 be an integer, and let a be coprime to q. Then∣∣∣∣π(x ; q, a)− Li(x)

φ(q)

∣∣∣∣ < 1

160

x

log2 x
for all x ≥ x0(q),

where

x0(q) =

{
8 · 109 if q ≤ 105,

exp(0.03
√
q log3 q), if q > 105.
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The Theorem

The constant as a function of q
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The Theorem

The website

http://www.nt.math.ubc.ca/BeMaObRe/

Theorem

Let a be coprime to 10, and x ≥ 3 375 517 771. Then∣∣∣∣π(x ; 10, a)− Li(x)

φ(q)

∣∣∣∣ < 1

2579

x

log2 x
.

Let a be coprime to 3461, and x ≥ 9 367 751. Then∣∣∣∣π(x ; 3461, a)− Li(x)

φ(q)

∣∣∣∣ < 1

1204

x

log2 x
.
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The Proof

Small q: Verifying GRH

GRH is equivalent to a certain quality error term, so results like this are
billed as “verifying GRH”.

Theorem

Let q ≤ 105 and (a, q) = 1, and x ≤ 1011 (or larger if q is small). We have

max
1≤y≤x

∣∣∣∣π(y ; q, a)− Li(y)

ϕ(q)

∣∣∣∣ ≤ 2.734

√
x

log x
.

This is the computational limit giving 1/160.
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The Proof

Small q: McCurley’s Four-Terms Lemma

Let x ≥ x2 > 2,H ≥ 1,m ≥ 2 and 0 < δ < x−2
mx .

Suppose that every L-function mod q satisfies GRH(1). Then

φ(q)

x

∣∣∣∣ψ(x ; q, a)− x

φ(q)

∣∣∣∣ < mδ

2
+ Uq,m,H(x) + Vq,m,H(x) + Wq(x),

Wq(x) :=
φ(q)

x

((
1
2 +

∑
p|q

1
p−1

)
log x + 4 log q + 13.4

)

Vq,m,H(x) :=

(
1 +

mδ

2

)∑
χ

∑
ρ

|γ|≤H

xβ−1

|ρ|

Uq,m,H(x) :=
Am(δ)

δm

∑
χ

∑
ρ

|γ|>H

xβ−1

|ρ(ρ+1)···(ρ+m)|
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The Proof Local Effects

Local Effects are negligible

Wq(x) :=
φ(q)

x

((
1
2 +

∑
p|q

1
p−1

)
log x + 4 log q + 13.4

)
Tiny.
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The Proof Low Height, low q

Low Height Tools

Vq,m,H(x) :=

(
1 +

mδ

2

)∑
χ

∑
ρ

|γ|≤H

xβ−1

|ρ|

sum over all characters mod q

ρ = β + iγ, L(ρ, χ) = 0
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The Proof Low Height, low q

Low Height Tools

Vq,m,H(x) :=

(
1 +

mδ

2

)∑
χ

∑
ρ

|γ|≤H

xβ−1

|ρ|
<

(
1 +

mδ

2

)
Cq√
x

sum over all characters mod q

ρ = β + iγ, L(ρ, χ) = 0

Platt: verified GRH for H = 108/q with q ≤ 105

Rubinstein: lcalc, fast reliable computation of zeros

Rosser: N(T ) < T
π log T

2πe + 0.34 logT + 6

Trudgian: N(T , χ) < T
π log q∗T

2πe + 0.4 log(q∗T ) + 5.4
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The Proof Large Height

Large Height Bound

Uq,m,H(x) :=
Am(δ)

δm

∑
χ

∑
|γ|>H

xβ−1

|ρ(ρ+ 1) · · · (ρ+ m)|

<
Am(δ)

δm

∑
χ

∑
|γ|>H

1
|ρ|m+1

≈
(

2

δ

)m

· Cq

Where are we?

φ(q)

x

∣∣∣∣ψ(x ; q, a)− x

φ(q)

∣∣∣∣ < mδ

2
+

(
2

δ

)m

· Cq + (1 +
mδ

2
)
Cq√
x

+ tiny
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The Proof Large Height

Zero-free region

Suppose that L(β + iγ, χ) = 0, and β > 0.
Then

β ≤ 1− 1

R log(q∗|γ|)

McCurley: R = 9.645908801

Kadiri: If 3 ≤ q ≤ 4 · 105, then R = 5.6

Platt: GRH
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The Proof Large q (without GRH(1))

Revised McCurley

What happens with q ≥ 105, without GRH?

McCurley’s Four-terms Lemma needs to be adjusted! The main concern is
the potential existence of an exceptional zero. Absorbing such concerns
into Wq(x) gives:

W̃q(x) <
ϕ(q)

x

(
log q · log x

log 2
+ 0.2516q log q

)
.
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The Proof Large q (without GRH(1))

L(1, χ)

Theorem

Let χ be a primitive quadratic character with modulus q > 6677. Then

L(1, χ) ≥ 12
√
q
.

If q ≥ 4 · 105, then

L(1, χ) ≥ 1
√
q

min

{
46π,max{12, log

√
q + 4 +

√
q

2
}
}
.
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The Proof Large q (without GRH(1))

How exceptional is an Exceptional Zero?

Theorem

Let q ≥ 3, and χ a quadratic character modulo q. If β > 0 and
L(β, χ) = 0, then

β ≤ 1− 40
√
q log2 q

.
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The Proof Large q (without GRH(1))

The x2(q)

We can get any positive number we want in place of “ 1
160 ” by making x2

(where the bound becomes official) large enough.
For any positive number, however, x2 is intractably large.
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The Corollaries

Small x

Theorem

Suppose that 3 ≤ q ≤ 105, gcd(a, q) = 1, and x ≥ 1000. Then∣∣∣∣ψ(x ; q, a)− x

ϕ(q)

∣∣∣∣ < 0.19
x

log x∣∣∣∣θ(x ; q, a)− x

ϕ(q)

∣∣∣∣ < 0.40
x

log x∣∣∣∣π(x ; q, a)− Li(x)

ϕ(q)

∣∣∣∣ < 0.53
x

log2 x
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The Corollaries

Small q, small x

Theorem

Let 3 ≤ q ≤ 1200 be an integer, and let a be an integer coprime to q.
For all x ≥ 50q2

1

φ(q)

x

log x
< π(x ; q, a)

and

π(x ; q, a) <
1

φ(q)

x

log x

(
1 +

5

2 log x

)
.
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The Corollaries

The n-th prime in an AP

Theorem

Let 3 ≤ q ≤ 1200 be an integer, and let a be an integer coprime to q.
If pn(q, a) ≥ 22q2, then pn(q, a) is between

N logN

and

N logN +
4

3
N log logN,

where N = nϕ(q).
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Metamathematics

Meta Issues

A 100 page technical argument, with large chunks pushed through by
computation. What could go wrong?

How to avoid small errors?
1 Special Cases
2 Redundant Coding
3 Vigorous self-refereeing
4 Careful Writing

How to inspire confidence that small errors have been avoided?
1 Giving detailed code
2 Giving detailed data

Other
1 Open source
2 Easy to extend? Not so much...yet.
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The End

Thanks to the organizers

Thanks to Yuri for scheduling

Thanks to Amalia for hospitality

Thanks to Universidad Valparaiso for facilities

Thanks to Audience for the obvious
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