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If R(k) > 0, then
k = 2n + 2m − 1,

and if n 6= m

k = (2n) + (2m − 1) = (2m) + (2n − 1),

so R(k) = 2.

If n = m, then
k = (2n) + (2m − 1) = (0) + (2n+1 − 1),

and so R(k) = 2.
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∑
n≥0

p(n)qn

 ( ∞∑
n=−∞

q3(3n−1)/2

)
≡ 1 (mod 2)

1 +
∑
n≥0

q2n

 ∑
n≥0

q2n−1

 ≡ 1 (mod 2)

(1 + q)(1 + q + q2 + q3 + · · · ) ≡ 1 (mod 2)

Nonnegative integer sets A and B are reciprocals if their generating
functions are reciprocals in F2[[q]].

A = {0, 1}, B = {0, 1, 2, 3, . . . }

A = {0, 1, 2, 4, 8, 16, . . . }, B = {0, 1, 3, 7, 15, . . . }



What it means

J I C IJ Slide 5

Suppose (
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2 + · · ·
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bn + bn−1a1 + bn−2a2 + · · ·+ b2an−2 + b1an−1 + an = 0.
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Suppose (
1 + a1q + a2q

2 + · · ·
) (

1 + b1q + b2q
2 + · · ·

)
= 1.

The coefficient of qn is

bn + bn−1a1 + bn−2a2 + · · ·+ b2an−2 + b1an−1 + an = 0.

Remark: For every set A there is a B such that...

Remark: F ∈ F2[[q]] is invertible if and only if...
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If max A = d, then

bn = bn−1a1 + bn−2a2 + · · ·+ bn−dad.

The sequence (b) is a linear recurrence sequence with boundary b0 = 1,
b−1 = 0, b−2 = 0, . . .
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If max A = d, then

bn = bn−1a1 + bn−2a2 + · · ·+ bn−dad.

The sequence (b) is a linear recurrence sequence with boundary b0 = 1,
b−1 = 0, b−2 = 0, . . .

• (b) is periodic.

• (b) may have more 0 than 1 (when d is small)

• If q generates the multiplicative group of F2[q]/(A), then every binary
word of length d appears in (b) except 0000 · · · 000. This is called a
reduced de Bruijn cycle.

• Period length = 2d − 1, with 2d−1 ones. Density slightly larger than
1/2.
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The points (n, δ(P̄n)), where the coeffs of Pn are the binary expansion of
n.
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• What are the possible densities of reciprocals of finite sets?

• Is the bias toward < 1/2 a law of small numbers?
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If P(q) is a polynomial, then there is another polynomial P∗ and a
positive integer D such that PP∗ = 1 + qD. We call the minimal such D

the order of P.
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2d−1

2d − 1
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If P(q) is a polynomial, then there is another polynomial P∗ and a
positive integer D such that PP∗ = 1 + qD. We call the minimal such D

the order of P.

Theorem: If P has degree d and order 2d − 1, then

δ(P̄) =
2d−1

2d − 1
.

Theorem: If P has order larger than 3, then

min{δ(P̄), δ(P̄∗)} ≤ 1
2
.

Proposition: The reciprocal of an eventually periodic set is one too.
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Θ(c1, c2) :=
{

c1n + c2
n(n− 1)

2
: n ∈ Z

}
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WOLOG: gcd(c1, c2) = 1, 0 ≤ 2c1 ≤ c2
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Θ(c1, c2) :=
{

c1n + c2
n(n− 1)

2
: n ∈ Z

}

WOLOG: gcd(c1, c2) = 1, 0 ≤ 2c1 ≤ c2

Θ(0, 1) =
{(

n

2

)
: n ≥ 1

}
Θ(1, 2) = {n2 : n ≥ 0}

Θ(1, 3) = {pentagonals}
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c1

c2

1 2 3 4 5 6

2 2090

3 5004

4 5088

5 5057 5019

6 2114

7 5020 5023 5000

8 5002 5045

9 5085 4942 4994

10 3854 4062

11 4994 4959 5073 4982 5039

12 5044 5073

13 4985 5002 4973 5071 4963 5090

14 4391 4445 4109
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The reciprocal of the set Θ(c1, c2), where 0 ≤ 2c1 ≤ c2 and gcd(c1, c2) = 1,
has density 0 if c2 ≡ 2 (mod 4), and otherwise has density 1/2.

More precisely, if c2 ≡ 2 (mod 4), then

lim
n→∞

∣∣Θ(c1, c2) ∩ [0, n]
∣∣

n/ log n
= C,

for some positive constant C depending only on c2. If c2 6≡ 2 (mod 4),
then

lim sup
n→∞

∣∣∣∣∣
∣∣Θ(c1, c2) ∩ [0, n]

∣∣− n/2√
n log log(n)/2

∣∣∣∣∣ = 1.
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How many numbers less than N can be written in the form

x2
0 + 2x2

1 + 4x2
2 + 8x2

3 + 16x2
4 + · · · ,

with nonnegative xi, in an odd number of ways?
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How many numbers less than N can be written in the form

x2
0 + 2x2

1 + 4x2
2 + 8x2

3 + 16x2
4 + · · · ,

with nonnegative xi, in an odd number of ways?

Conjecture: ∼ 2N

log N
.

We know except for n ≡ 3 (mod 4).

Conjecture: #{n ≤ N : p(n) is odd} ∼ N

2
.

Current bests:
# ≥

(
π2
√

3
2

− o(1)

) √
N

log N
(D. Eichhorn)

limN→∞
N−#√

N
= ∞ (Serre)



Typical Behavior
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Let f1, f2, . . . be independent binary random variables, with

P[fn = 0]P[fn = 1]

bounded away from 0.

Define f̄1, f̄2, . . . by

(1 + f1q + f2q
2 + f3q

3 + · · · )(1 + f̄1q + f̄2q
2 + f̄3q

3 + . . . ) = 1.

Then the number of f̄1, f̄2, . . . , f̄N that are 1 is ∼ N/2 with probability 1.
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f̄n =
∑

~x

fx1fx2 · · · fx`

where the summation extends over all tuples ~x = (x1, . . . , x`) with
n =

∑`
i=1 xi and each xi > 0 (` is allowed to vary).
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f̄n =
∑

~x

fx1fx2 · · · fx`

where the summation extends over all tuples ~x = (x1, . . . , x`) with
n =

∑`
i=1 xi and each xi > 0 (` is allowed to vary).

f̄n = fn + fn−2if̄i + fn−4if̄2 + . . . fn/2f̄n/4 + mess

and mess depends only on f1, f2, . . . , fn/2−1.
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Thus,

H[fn|f1, . . . , fn/2−1] ≥ H[
∑
i∈A

fi|A]

where A = {n− 2i : 0 ≤ i < n/4, f̄i = 1}. Since

• |A| → ∞ (requires easy proof),

• this uncertainty goes to 1/2 (requires proof),

• and so P[fn = 0] → 1/2 (obvious),

• and consequently #{n ≤ N : f̄n = 0} ∼ N/2 (obscure Borel-Cantelli
Lemma)



Explanation

J I C IJ Slide 17

Thus,

H[fn|f1, . . . , fn/2−1] ≥ H[
∑
i∈A

fi|A]

where A = {n− 2i : 0 ≤ i < n/4, f̄i = 1}. Since

• |A| → ∞ (requires easy proof),

• this uncertainty goes to 1/2 (requires proof),

• and so P[fn = 0] → 1/2 (obvious),

• and consequently #{n ≤ N : f̄n = 0} ∼ N/2 (obscure Borel-Cantelli
Lemma)



Explanation

J I C IJ Slide 17

Thus,

H[fn|f1, . . . , fn/2−1] ≥ H[
∑
i∈A

fi|A]

where A = {n− 2i : 0 ≤ i < n/4, f̄i = 1}. Since

• |A| → ∞ (requires easy proof),

• this uncertainty goes to 1/2 (requires proof),

• and so P[fn = 0] → 1/2 (obvious),

• and consequently #{n ≤ N : f̄n = 0} ∼ N/2 (obscure Borel-Cantelli
Lemma)



Explanation

J I C IJ Slide 17

Thus,

H[fn|f1, . . . , fn/2−1] ≥ H[
∑
i∈A

fi|A]

where A = {n− 2i : 0 ≤ i < n/4, f̄i = 1}. Since

• |A| → ∞ (requires easy proof),

• this uncertainty goes to 1/2 (requires proof),

• and so P[fn = 0] → 1/2 (obvious),

• and consequently #{n ≤ N : f̄n = 0} ∼ N/2 (obscure Borel-Cantelli
Lemma)



Explanation

J I C IJ Slide 17

Thus,

H[fn|f1, . . . , fn/2−1] ≥ H[
∑
i∈A

fi|A]

where A = {n− 2i : 0 ≤ i < n/4, f̄i = 1}. Since

• |A| → ∞ (requires easy proof),

• this uncertainty goes to 1/2 (requires proof),

• and so P[fn = 0] → 1/2 (obvious),

• and consequently #{n ≤ N : f̄n = 0} ∼ N/2 (obscure Borel-Cantelli
Lemma)



Conclusion

J I C IJ Slide 18

Plans for future development:

• Take some interesting set of integers, call it A. Find Ā.

• Probabilistic argument is not most general possible.

• arXiv:math.NT/0506496
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The End


