Calculus II

MTH232, Spring 2020

MoWe 2:30-4:25 PM, Room: 1S 219

Review Assignment \#1

1. Compute formulas for the derivatives of the following functions.
(a) $f(x)=5 x^{2}+7 x-3$
(b) $r(t)=\cos (2 t+3)$
(c) $t(x)=e^{x} \sin x$
(d) $g(y)=2 y \sin (2 y) \cdot e^{y}$
2. The function f has domain $(-2,2)$ and range $(-1,7)$. What are the domains and ranges of $g(x)=f(2 x), h(x)=f(\sqrt{x}), k(x)=f^{-1}(x)$ (assuming that the inverse exists!).
3. Evaluate $\lim _{x \rightarrow 0} \frac{(x+2)^{2}-4}{x}$.

Review Assignment \#2

1. Compute formulas for the derivatives of the following functions.
(a) $f(x)=5.1 x^{2}+7.2 x-3.3$
(b) $r(t)=\tan (3 t-3)$
(c) $t(x)=e^{2 x} \sin y$
(d) $g(y)=\cos (\sin y)$
2. Evaluate the following: $\tan \frac{\pi}{3}, \sin \frac{\pi}{2}, \cos \frac{\pi}{6}, \sin (200 \pi), \cos (200 \pi), \sin \left(\sin \frac{\pi}{6}\right)$.
3. Evaluate $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}$.

Review Assignment \#3

1. Compute formulas for the derivatives of the following functions.
(a) $f(x)=15 x^{3}-2 x^{2}+3 x+12 x^{-2}-10 x^{-3}$
(b) $r(t)=\cos (2 / t)$
(c) $t(x)=e^{x+x^{2}} \sin \left(x+x^{2}\right)$
(d) $g(y)=\left(x^{2}+x+1\right)\left(2+3 x+4 x^{2}\right)($ trick question!)
2. Solve the equations:
(a) $\log \left(e^{3 x}\right)=10$ (except in calculus textbooks and on high-school calculators, "log" refers to the natural logarithm)
(b) $u^{2}-3 u-4=0$
(c) $e^{2 x}-3 e^{x}-4=0$
3. Evaluate $\lim _{x \rightarrow 0} \sqrt{x^{2}}$.

Review Assignment \#4

1. Compute formulas for the derivatives of the following functions.
(a) $f(x)=(2 x+3)^{2}$
(b) $r(t)=\cos ^{2}(2 / t)+\sin ^{2}(2 / t)$
(c) $t(x)=\sin \left(\cos \left(x+x^{2}\right)\right)$
(d) $g(x)=\frac{x^{2}+x+1}{2+3 x+4 x^{2}}$
2. Let $f(x)=1+x+x^{2}+x^{3}+\cdots+x^{100}$. Find $f^{\prime}(1)$.
3. Express $2 / 7$ as a (repeating) decimal.

Review Assignment \#5

1. Compute formulas for the derivatives of the following functions.
(a) $f(x)=(2 x+3)^{1 / 2}$
(b) $r(t)=\cos ^{2020}(2 t)$
(c) $t(x)=\exp (x+1 / x)$
(d) $g(x)=\log \frac{x^{2}+x+1}{2+3 x+4 x^{2}}$
2. Consider the function defined by $f(x)=A x^{2}+B x+C$ for real numbers x. What conditions on A, B, C guarantee that f has a minimum? At which x does that minimum occur? What is that minimum? What conditions guarantee a maximum? Where does it happen, and what is that maximum?
3. Find (an equation for) the tangent line to (the graph of) $a(t)=2 t^{2}+3$ at $t=1$.

Review Assignment \#6

1. Compute formulas for the derivatives of the following functions.
(a) $f(x)=3 x^{3 / 2}+\cos (x)^{3 / 2}$
(b) $r(t)=\frac{1}{\sqrt{x}}$
(c) $t(x)=\frac{1}{x^{2}+1}$
(d) $g(x)=(x+1)^{-1}$
2. (Challenging!) The function $f(x)=x^{4}-x^{3}-x^{2}+a x+1$ has a relative minimum at $x=a$ and $f(a)=a$. Find a.
3. Express $\cos (2 x)$ and $\sin (2 x)$ in terms of $\cos x$ andsin x.
