Data Visualization

Lecture 11

Geographic Visualizations

Maps, GIS

Geographic Map

- Interlocking marks
 - Shape coded
 - Position coded
 - Area coded
 - These attributes are taken, unavailable for coding additional information.

Thematic Maps

- Shows spatial variability of some attribute (theme)
 - combines geographic / reference map with tabular data
 - join together
 - region: interlocking area marks (provinces, countries, regions with outlines)
 - could also have point marks (cities, locations with lat/lon coordinates)
 - region: categorical key attribute in tabular data
 - used to look up value attributes
- major idioms
 - choropleth
 - symbol maps
 - cartograms
 - dot density maps

Visualization Idiom Choropleth map

- Use given spatial data
 - when central task is understanding spatial relationships
- data
 - geographic geometry
 - table with 1 quant attribute per region
- encoding
 - position: use given geometry for area mark boundaries
 - color: sequential segmented colormap

Beware! Population Maps Trickiness!

- spurious correlations: most maps just show where people live
- consider when to normalize by population density
 - encode raw data values
 - tied to underlying population
 - but should use normalized values
 - unemployed per 100 citizens, mean family income
- general issue
 - absolute counts vs relative/normalized data
 - failure to normalize is common error
- area impacts: population vs population density
 - Trump voting maps

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

Choropleth Maps Recommendations

- only use when the central task is understanding spatial relationships
- show only one variable at a time
- normalize when appropriate
- be careful when choosing colors and bins
- best case: regions are roughly equal sized

Choropleth Maps Pro vs Con

• pros

- easy to read and understand
- well established visualization (no learning curve)
- data is often collected and aggregated by geographical regions
- cons
 - most effective visual variable is already in use for geographic location
 - visual salience depends on region size, not true importance ("land does not vote" wrt voting results maps)
 - large regions appear more important than small ones
 - color palette choice has a huge influence on the result

Visualization Idiom Symbol Map

- symbol is used to represent aggregated data
 - allows use of size and shape as visual channels
 - aka proportional symbol maps, graduated symbol maps
- keep original spatial geometry in the background
- often a good alternative to choropleth maps

Symbol Maps with Glyphs Vary the symbol to encode more

• pros

- somewhat intuitive to read and understand
- mitigates problems with region size vs data salience
 - marks: symbol size follows attribute value
 - glyphs: symbol size can be uniform

• cons

- possible occlusion / overlap
 - symbols could overlap each other
 - symbols could occlude region boundaries
- complex glyphs may require explanation / training

State Populations 2010, 2020 and 2021 Gridlines every 5M, thick line every 10M

Visualization Idiom Contiguous Cartogram

- interlocking marks: shape, area and position coded
- derive new interlocking marks
 - combine original interlocking marks with new quantitative attribute
- algorithm for new marks
 - input: target sizes
 - goal: shape as close to original as possible
 - requirement: maintain constraints
 - relative position
 - contiguous boundaries with neighbors

Visualization Idiom Non-contiguous Cartogram

- interlocking marks: shape, area and position coded
- derive new interlocking marks
 - combine original interlocking marks with new quantitative attribute
 - resize new marks according to quant attribute
 - maintain centroid position

Visualization Idiom Grid Cartogram

- uniform-sized shapes arranged in a rectilinear grid
- maintain approximate spatial position and arrangement

Cartogram Pro & Con

• pros

- Can be intriguing and engaging
- best case: strong and surprising size disparities
- non-contiguous cartograms often easier to understand
- cons
 - require substantial familiarity with original dataset & use of memory
 - compare distorted marks to memory of original marks
 - mitigation strategies: animated transitions or side-by-side views
 - major distortion is problematic
 - may be aesthetically displeasing
 - may result in unrecognizable marks
 - difficult to extract exact quantities

Visualization Idiom: Dot density maps

- visualize distribution of a phenomenon by placing dots
- one symbol represents a constant number of items
 - dots have uniform size and shape
 - allows use of color channel
- task: show spatial patterns, clusters

Distribution of educational attainment in NYC Each dot = 100 people, placed at random in census tract

Dot Density Maps Pro vs Con

• pros

- straightforward to understand
- avoids choropleth non-uniform region size problem
- cons
 - challenge: normalization, just like choropleths
 - shows population density (correlated with attributes), not effect of interest
 - perceptual disadvantage: difficult to extract quantities
 - performance disadvantage: rendering many dots can be slow
 - the plot on the preceding slide has over 60k individual dots, and took almost an hour to process and render

Geographic Coordinates and Projections

Curvature

- The Earth surface has curvature; a sheet of paper, or a computer screen does not
 - Representing one on the other introduces distortion
 - Many ways to put coordinates on the surface of the Earth
 - Many possibly interesting invariants:
 - Area? Angles? Geodesics to be straight lines? No discontinuity in areas of interest? Minimal distortion in areas of interest?
- Coordinate Reference System (CRS) is a framework to precisely represent Earth locations as coordinates
 - Choose: Earth ellipsoid, coordinate representation (horizontal datum), map projection (or choose the GCS – geographic coordinate system – longitude/latitude)
 - Standardized in EPSG codes, ISO standards
- Choice of ellipsoid and datum can give the same location different coordinates
 - And any high-precision choice has to be continuously updated: tectonic movements, tidal effects, effects from the last ice age: Scandinavia rises with 1cm/year after the last ice age

CRS Types

- Geographic (geodetic) coordinate system
 - Spherical coordinates, longitude and latitude. Discontinuous at poles, and opposite the *prime meridian*.
 - WGS84 World Geodetic System; NAD83 (North Americn Datum); ED50 (European Datum, NATO); OSGB36 (UK Datum);
- Geocentric coordinate system
 - 3D system, used by satellites and GPS
- Projected coordinate system (planar, grid)
 - Map projections
- Engineering coordinate system
 - Custom-made for small area by explicitly surveying

Map Projection Types and Properties

Types

- Cylindrical
 - Meridians map to vertical lines, parallels map to horizontal lines
- Pseudocylindrical
 - Some meridians map to regularly spaced curves instead of straight lines
- Conic
 - Meridians as straight lines, parallels as circle arcs
- Pseudoconical
 - Non-central meridians may be complex curves
- Azimuthal
 - Meridians as straight lines, parallels as complete concentric circles
- Pseudoazimuthal
 - Equator and central meridian to perpendicular intersecting straight lines. Parallels bow away from the equator, meridians bow toward the central meridian.
- Other
 - Not based on a particular projection
- Polyhedral
 - Can be folded up to a polyhedral approximation of the sphere, usually maps each face with low distortion, but has discontinuous cut-lines

Properties

- Conformal
 - Local angles preserved, local shapes undistorted, local scale constant in all directions
- Equal-area
 - Area preserved everywhere
- Compromise
 - Balance between conformality and equal-area, to reduce overall distortion
- Equidistant
 - All distances from one (or two) specific points are correct
- Gnomonic
 - All great circles are straight lines
- Retroazimuthal
 - Shortest rout direction to a fixed location corresponds to map direction to that location

Significant Map Projections

- Cylindrical
 - Plate Carrée
 - 120 CE, distances along meridians conserved
 - Mercator
 - 1569 CE, lines of constant bearing are straight (easy for navigation); areas distort as map approaches poles
 - Web Mercator
 - 2005 CE, simplification of Mercator for fast calculation, clips latitudes at ±85.05° for square presentation. De facto standard for web-based maps.
 - Gall-Peters
 - 1855 CE, equal-area, with standard parallels at ±45°
 - Cassini
 - 1745 CE, distances along central meridian are conserved, distances perpendicular to central meridian are preserved.
- Conical
 - Albers
 - 1805 CE, two standard parallels, low distortion between them

- Lambert conformal
 - 1772 CE, used in aviation charts
- Polyhedral
 - Dymaxion
 - 1943 CE, Introduced by Buckminster Fuller
 - Waterman Butterfly
 - 1996 CE
- Other
 - Gnomonic
 - 580 BC, All great circles map to straight lines, shows less than half the globe
 - Two-point equidistant
 - 1919 CE, Any two control points all straight line distances to those two points are accurate
 - GS50
 - 1982 CE, particularly low distortion of Continental US

Significant Map Projections

Significant or Interesting CRS Choices

EPSG:4269: NAD83

EPSG:4326: WGS 84 Grad Center is at (40.7486, -73.984) 50°N 45°N 40°N 35°N 30°N 25°N 120°W 110°W 100°W 90°W 80°W 70°W

EPSG:3857: WGS 84 / Pseudo-Mercator

120°W 110°W 100°W 90°W 80°W 70°W

EPSG:3395: WGS 84 / World Mercator Grad Center is at (4536110, -12468000)

EPSG:5070: NAD83 / Conus Albers Grad Center is at (16599000, 7727750)

EPSG:3786: World Equidistant Cylindrical (Sphere) Grad Center is at (4531040, -8226650)

